Лекарственная гиперчувствительность: молекулярные механизмы и современные подходы к диагностике


DOI: https://dx.doi.org/10.18565/nephrology.2019.2.58-68

К.А. Айтбаев, И.Т. Муркамилов, В.В. Фомин, А.Д. Алымкулова, М.Т. Талайбеков, Ж.А. Муркамилова

1) Научно-исследовательский институт молекулярной биологии и медицины, Бишкек, Кыргызстан; 2) Кыргызская государственная медицинская академия им. И.К. Ахунбаева, Бишкек, Кыргызстан; 3) Кыргызско-Российский Славянский университет им. первого Президента России Б.Н. Ельцина, Бишкек, Кыргызстан; 4) ФГБОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова», Москва, Россия; 5) Центр семейной медицины № 7, Бишкек, Кыргызстан
Клинические проявления лекарственной гиперчувствительности (ЛГ) могут варьироваться в диапазоне от мягких кожных реакций (например, макулопапулезная экзантема и крапивница) до тяжелых системных реакций, таких как анафилаксия, обусловленная лекарствами эозинофилия с системными симптомами (DRESS – drug reactions with eosinophilia and systemic symptoms)/индуцированный лекарствами синдром гиперчувствительности (DIHS), или синдром Стивенса–Джонсона (SJS – Stevens–Johnson syndrome)/токсический эпидермальный некролиз (TEN – toxic epidermal necrolysis). В современных фармакогеномных исследованиях сделаны важные шаги по предотвращению некоторых форм лекарственной ЛГ путем идентификации соответствующих генетических вариантов, особенно тех, которые кодируют ферменты, метаболизирующие лекарственные средства и антигены лейкоцитов человека (HLA – human leucocyte antigens). Кроме того, успехи в области иммунологической генетики позволили выдвинуть новые концепции механизмов развития ЛГ. В результате чего модели презентации лекарств, объясняющих, каким образом небольшие лекарственные антигены могут взаимодействовать с молекулами HLA (human leucocyte antigens) и T-клеточного рецептора (TCR) при ЛГ, значительно дополнились и сегодня включают помимо теории гаптена концепцию «фармакологического взаимодействия», модель измененного пептидного репертуара и модель измененного репертуара TCR. Широкий спектр клинических проявлений ЛГ и участие различных лекарственных средств в ее развитии, а также многообразие патогенетических механизмов делают диагностику и управление ЛГ чрезвычайно сложным. В настоящем обзоре освещены последние достижения в изучении молекулярных механизмов развития ЛГ и кратко рассмотрены современные подходы к ее диагностике.
Ключевые слова: лекарственная гиперчувствительность, анафилаксия, молекулярные механизмы, модели презентации лекарств, диагностика

Литература


  1. Pichler W.J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 2003;139(8):683–693. Doi: 10.7326/0003-4819-139-8-200310210-00012.
  2. Montañez M.I., Mayorga C., Bogas G., et al. Epidemiology, mechanisms, and diagnosis of drug-induced anaphylaxis. Front. Immunol. 2017;8:614. Doi:10.3389/fimmu.2017.00614.
  3. Schnyder B., Pichler W.J. Mechanisms of drug-induced allergy. Mayo Clinic Proceedings. 2009;84(3):268–272. Doi: 10.1016/S0025-6196(11)61145-2.
  4. Johansson S.G., Bieber T., Dahl R., et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, 2003. J. Allerg. Clin. Immunol. 2004;113 (5):832–836. Doi:10.1016/j.jaci.2003.12.591.
  5. Mockenhaupt M. Epidemiology of cutaneous adverse drug reactions. Chem. Immunol. Allerg. 2012;97:1–17. Doi: 10.1159/000335612.
  6. Wong G.A., Shear N.H. Adverse drug interactions and reactions in dermatology: current issues of clinical relevance. Dermatol. Clin. 2005;23(2):335–42. Doi:10.1155/2018/6431694.
  7. Bastuji-Garin S., Rzany B., Stern R.S., et al. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch. Dermatol. 1993;129(1):92–96.
  8. Sidoroff A., Dunant A., Viboud C., et al. Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (EuroSCAR). Br. J. Dermatol. 2007;157(5):989–996. Doi:10.1111/i.1365-2133.2007.081 56.
  9. Lerch M., Pichler W.J. The immunological and clinical spectrum of delayed drug-induced exanthems. Curr. Opin. Allerg. Clin. Immunol. 2004;4(5):411–419.
  10. Padovan E., Bauer T., Tongio M.M., et al. Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur. J. Immunol. 1997;27(6):1303–7. Doi:10.1002/eji.1830270602.
  11. Wei C.Y., Chung W.H., Huang H.W., et al. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J. Allerg. Clin. Immunol. 2012;12 (6):1562–1569. Doi:10.1016/j.jaci.2011.12.990.
  12. Yun J., Marcaida M.J., Eriksson K.K., et al. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B 58:01. J. Immunol. 2014;192(7):2984–2993. Doi: 10.4049/jimmunol.1302306.
  13. Illing P.T., Vivian J.P., Dudek N.L., et al. Immune selfreactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012;486(7404):554–558. Doi: 10.1038/nature11147.
  14. Ostrov D.A., Grant B.J., Pompeu Y.A., et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(25):9959–9964. Doi: 10.1073/pnas.1207934109.
  15. Тюльганова Д.А., Насаев Ш.Ш., Титерина Е.Л. и др. Новая концепция механизмов развития лекарственной гиперчувствительности. Иммунология, аллергология, инфектология. 2017;
  16. 2:70–75.
  17. White K.D., Chung W.H., Hung S.I., et al. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: the role of host, pathogens, and drug response. J. Allerg. Clin. Immunol. 2015;136(2):219–34. Doi: 10.1016/j.jaci.2015.05.05016.
  18. Watkins S., Pichler W.J. Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVβ20-1, altering pHLA recognition. PLoS One. 2013;8(10):article e76211. Doi:org/10.1371/journal.pone.0076211.
  19. 18.Williams K.W., Sharma H.P. Anaphylaxis and urticarial. Immunol. Allerg. Clin. North America. 2015;35(1):199–219. Doi:10.1016/j.iac.2014.09.010.
  20. MacGlashan Jr. D. Expression of CD203c and CD63 in human basophils: relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clin. Exper. Allerg. 2010;40(9):1365–1377. Doi:10.1111/j.1365-2222.2010.03572.x.
  21. MacGlashan Jr. D.W. Basophil activation testing. J. Allerg. Clin. Immunol. 2013;132(4):777–787. Doi: https://doi.org/10.1016/j.jaci.2013.06.038 .
  22. Munoz-Cano R., Picado C., Valero A., Bartra J. Mechanisms of anaphylaxis beyond IgE. J. Investig. Allerg. Clin. Immunol. 2016;26(2):73–82. Doi: 10.18176/jiaci.0046.
  23. Finkelman F.D., Khodoun M.V., Strait R. Human IgE-independent systemic anaphylaxis. J. Allerg. Clin. Immunol. 2016;137(6):1674–80. Doi: 10.1016/j.jaci.2016.02.015.
  24. Vadas P., Gold M., Perelman B., et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. New Engl. J. Med. 2008;358(1):28–35. Doi: 10.1056/NEJMoa070030.
  25. Van der Heijden J., Geissler J., van Mirre E., et al. A novel splice variant of FcγRIIa: a risk factor for anaphylaxis in patients with hypogammaglobulinemia. J. Allerg. Clin. Immunol. 2013;131(5):1408–16.e5. Doi: 10.1016/j.jaci.2013.02.009.
  26. Vassallo R.R. Review: IgA anaphylactic transfusion reactions. Part I. Laboratory diagnosis, incidence, and supply of IgA-deficient products. Immunohematol. 2004;20(4):226–233.
  27. Steenholdt C., Svenson M., Bendtzen K., et al. Acute and delayed hypersensitivity reactions to infliximab and adalimumab in a patient with Crohn’s disease. J Crohn’s Colit. 2012;6(1):108–111. Doi: 10.1016/j.crohns.2011.08.001.
  28. Baert F., Noman M., Vermeire S., et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. New Engl. J. Med. 2003;348(7):601–608. Doi: 10.1056/NEJMoa020888.
  29. Szebeni J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biological. Mol. Immunol. 2014;61(2):163–173. Doi: 10.1016/j.molimm.2014.06.038.
  30. Kishimoto T.K., Viswanathan K., Ganguly T., et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. New Engl. J. Med. 2008;358(23):2457–2467. Doi: 10.1056/NEJMoa0803200.
  31. Veien M., Szlam F., Holden J.T., et al. Mechanisms of nonimmunological histamine and tryptase release from human cutaneous mast cells. Anesthesiol. 2000;92(4):1074–1081.
  32. Blunk J.A., Schmelz M., Zeck S., et al. Opioid-induced mast cell activation and vascular responses is not mediated by μ-opioid receptors: an in vivo microdialysis study in human skin. Anesth. Analg.. 2004; 98(2):364–370.
  33. Subramanian H., Gupta K., Ali H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J. Allerg. Clin. Immunol. 2016;138(3):700–710. Doi:10.1016/j.jaci.2016.04.051.
  34. McNeil B.D., Pundir P., Meeker S., et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237–241. Doi: 10.1038/nature14022.
  35. Posadas S.J., Padial A., Torres M.J., et al. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J. Allerg. Clin. Immunol. 2002;109(1):155–161. Doi: https://doi.org/10.1067/mai.2002.120563.
  36. Viard I., Wehrli P., Bullani R., et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282(5388):490–3.
  37. Nassif A., Bensussan A., Dorothee G., et al. Drug specific cytotoxic T-cells in the skin lesions of a patient with toxic epidermal necrolysis. J. Investig. Dermatol. 2002;118(4):728–733. Doi: 10.1046/j.1523-1747.2002.01622.x.
  38. Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 2015;15(6):388–400. Doi: 10.1038/nri3839.
  39. Chung W.H., Hung S.I., Yang J.Y., et al. Granulysin is a key mediator for disseminated keratinocyte death in StevensJohnson syndrome and toxic epidermal necrolysis. Nat. Med. 2008;14(12):1343–1350. Doi: 10.1038/nm.1884.
  40. Abe R., Yoshioka N., Murata J., Fujita Y., Shimizu H. Granulysin as a marker for early diagnosis of the Stevens Johnson syndrome. Ann. Intern. Med. 2009;151(7):514–5. Doi: 10.7326/0003-4819-151-7-200910060-00016.
  41. Weinborn M., Barbaud A., Truchetet F., et al. Histopathological study of six types of adverse cutaneous drug reactions using granulysin expression. Intern. J. Dermatol. 2016;55(11):1225–1233. Doi: 10.1111/ijd.13350.
  42. SC S., Mockenhaupt M., Wolkenstein P., et al. Interleukin 15 is associated with severity and mortality in StevensJohnson syndrome/toxic epidermal necrolysis. J. Investig. Dermatol. 2017;137:1065–1073. Doi: 10.1016/j.jid.2016.11.034.
  43. Liu Z.G. Molecular mechanism of ФНО signaling and beyond. Cell. Res. 2005;15(1):24–27. Doi: 10.1038/sj.cr.7290259.
  44. Paquet P., Nikkels A., Arrese J.E., et al. Macrophages and tumor necrosis factor a in toxic epidermal necrolysis. Arch. Dermatol. 1994;130(5):605–608. Doi:10.1001/archderm.1994.01690050073012.
  45. Paul C., Wolkenstein P., Adle H., et al. Apoptosis as a mechanism of keratinocyte death in toxic epidermal necrolysis. Br. J. Dermatol. 1996;134(4):710–714.
  46. Nassif A., Moslehi H., Le Gouvello S., et al. Evaluation of the potential role of cytokines in toxic epidermal necrolysis. J. Investig. Dermatol. 2004;123(5):850–855. Doi: 10.1111/j.0022-202X.2004.23439.x.
  47. Caproni M., Torchia D., Schincaglia E., et al. Expression of cytokines and chemokine receptors in the cutaneous lesions of erythema multiforme and Stevens-Johnson syndrome/ toxic epidermal necrolysis. Br. J. Dermatol. 2006;155(4):722–728. Doi: 10.1111/j.1365-2133.2006.07398.x.
  48. Halevy S. Acute generalized exanthematous pustulosis. Curr. Opin. Allerg. Clin. Immunol. 2009;9(4):322–328. Doi: 10.1097/ACI.0b013e32832cf64e.
  49. Schaerli P., Britschgi M., Keller M., et al. Characterization of human T cells that regulate neutrophilic skin inflammation. J. Immunol. 2004;173(3):2151–2158.
  50. Britschgi M., Pichler W.J. Acute generalized exanthematous pustulosis, a clue to neutrophil-mediated inflammatory processes orchestrated by T cells. Curr. Opin. Allerg. Clin. Immunol. 2002;2(4):325–331.
  51. Navarini A.A., Valeyrie-Allanore L., Setta-Kaffetzi N., et al. Rare variations in IL36RN in severe adverse drug reactions manifesting as acute generalized exanthematous pustulosis. J. Investig. Dermatol. 2013;133(7):1904–1907. Doi: 10.1038/jid.2013.44.
  52. Song H.S., Kim S.J., Park T.I., et al. Immunohistochemical comparison of IL-36 and the IL-23/ Th17 axis of generalized pustular psoriasis and acute generalized exanthematous pustulosis. Ann. Dermatol. 2016;28(4):451–456. Doi: 10.5021/ad.2016.28.4.451.
  53. Walsh S.A., Creamer D. Drug reaction with eosinophilia and systemic symptoms (DRESS): a clinical update and review of current thinking. Clin. Exper. Dermatol. 2011;36(1):6–11. Doi: 10.1111/j.1365-2230.2010.03967.x.
  54. Komatsu-Fujii T., Chinuki Y., Niihara H., et al. The thymus and activation-regulated chemokine (TARC) level in serum at an early stage of a drug eruption is a prognostic biomarker of severity of systemic inflammation. Allerg. Intern. 2018;67(1):90–95. Doi: 10.1016/j.alit.2017.06.001.
  55. Ogawa K., Morito H., Hasegawa A., et al. Identification of thymus and activation-regulated chemokine (TARC/CCL17) as a potential marker for early indication of disease and prediction of disease activity in drug-induced hypersensitivity syndrome (DIHS)/drug rash with eosinophilia and systemic symptoms (DRESS). J. Dermatol. Sci. 2013;69(1):38–43. Doi: 10.1016/j.jdermsci.2012.10.002.
  56. Tapia B., Padial A., Sanchez-Sabate E., et al. Involvement of CCL27-CCR10 interactions in drug-induced cutaneous reactions. J. Allerg. Clin. Immunol. 2004;114(2):335–340. Doi:10.1016/j.jaci.2004.04.034.
  57. Correia O., Delgado L., Barbosa I.L., et al. Increased interleukin 10, tumor necrosis factor α, and interleukin 6 levels in blister fluid of toxic epidermal necrolysis. J. Am. Acad. Dermatol. 2002;47(1):58–62.
  58. Paquet P., Paquet F., Al Saleh W., et al. Immunoregulatory effector cells in drug-induced toxic epidermal necrolysis. Am. J. Dermatopathol.. 2000;22(5):413–417.
  59. Chung W.H., Chang W.C., Stocker S.L., et al. Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann. Rheum. Dis. 2015;74(12):2157–2164. Doi: 10.1136/annrheumdis-2014-205577.
  60. Takahashi R., Kano Y., Yamazaki Y., et al. Defective regulatory T cells in patients with severe drug eruptions: timing of the dysfunction is associated with the pathological phenotype and outcome. J. Immunol. 2009;182(12):8071–8079. Doi: 10.4049/jimmunol.0804002.
  61. Shiohara T., Inaoka M., Kano Y. Drug-induced hypersensitivity syndrome (DIHS): a reaction induced by a complex interplay among herpesviruses and antiviral and antidrug immune responses. Allerg. Intern. 2006;55(1):1–8. Doi: 10.2332/allergolint.55.1.
  62. Kardaun S.H., Sekula P., Valeyrie-Allanore L., et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): an original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br. J. Dermatol. 2013;169(5):1071–80. Doi: 10.1111/bjd.12501.
  63. Shiohara T., Kurata M., Mizukawa Y., Kano Y. Recognition of immune reconstitution syndrome necessary for better management of patients with severe drug eruptions and those under immunosuppressive therapy. Allerg. Intern. 2010;59(4):333–343. Doi: 10.2332/allergolint.10-RAI-026.
  64. Shiohara T., Ushigome Y., Kano Y., Takahashi R. Crucial role of viral reactivation in the development of severe drug eruptions: a comprehensive review. Clin. Rev. Allerg. Immunol. 2015;49(2):192–202. Doi: 10.1007/s12016-014-8421-3.
  65. Российская ассоциация аллергологов и клинических иммунологов. Федеральные клинические рекомендации по диагностике аллергических заболеваний. М., 2015.
  66. Российская ассоциация аллергологов и клинических иммунологов. Федеральные клинические рекомендации по диагностике и терапии анафилаксии. М., 2015.
  67. Brockow K., PRzybilla B., Aberer W., et al. Guideline for the diagnosis of drug hypersensitivity reactions. Allerg. J. Intern. 2015;24(3):94–105. Doi: 10.1007/s40629-015-0052-60.
  68. Елисеева Т.И., Балаболкин И.И. Аллергические реакции на лекарственные средства: современные представления (обзор). Современные технологии в медицине. 2016;8(1):159–171. Doi:10.17691/stm2016.8.1.22.
  69. Мясникова Т.Н., Романова Т.С., Хлудова Л.Г., Латышева Т.В. Диагностика лекарственной аллергии: современный взгляд на проблему. РМЖ. 2018;8(1):28–32.
  70. Simons F.E., Ardusso L.R., Bilo M.B., et al. 2012 update: World Allergy Organization guidelines for the assessment and management of anaphylaxis. Curr. Opin. Allerg. Clin. Immunol. 2012;12(4):389–399. Doi:10.1097/ACI.0b013e328355b7e4.
  71. Lin R.Y., Schwartz L.B., Curry A., et al. Histamine and tryptase levels in patients with acute allergic reactions: an emergency department-based study. J. Allerg. Clin. Immunol. 2000;106(1):65–71. Doi: 10.1067/mai.2000.107600.
  72. Simons F.E., Ardusso L.R., Bilò M.B., et al. World Allergy Organization anaphylaxis guidelines: summary. J. Allerg. Clin. Immunol. 2011;127(3):587–93.e22. Doi: 10.1016/j.jaci.2011.01.038.
  73. Simons F.E., Frew A.J, Ansotegui I.J, et al. Risk assessment in anaphylaxis: current and future approaches. J. Allerg. Clin. Immunol. 2007;120(1):S2–S24. Doi: 10.1016/j.jaci.2007.05.001.
  74. Gomez E., Torres M.J., Mayorga C., Blanca M. Immunologic evaluation of drug allergy. Allerg., Asthma Immunol. Res. 2012;4(5):251–263. Doi:10.4168/aair.2012.4.5.251.
  75. Blanca M., Mayorga C., Torres M.J., et al. Clinical evaluation of Pharmacia CAP system™ RAST FEIA amoxicilloyl and benzylpenicilloyl in patients with penicillin allergy. Allerg. 2001;56(9):862–870.
  76. Dona I., Torres M.J., Montanez M.I., Fernandez T.D. In vitro diagnostic testing for antibiotic allergy. Allerg. Asthma Immunol. Res. 2017;9(4):288–298. Doi: 10.4168/aair.2017.9.4.288.
  77. Mayorg C., Dona I., Perez-Inestrosa E., et al. The value of in vitro tests to diminish drug challenges. Intern. J. Mol. Sci. 2017;18(6):1222.Doi:10.3390/ijms18061222.
  78. Mayorga C., Celik G., Rouzaire P., et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allerg. 2016;71(8):1103–1134. Doi:10.1111/all.12886.
  79. Hoffmann H.J., Santos A.F., Mayorga C., et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allerg. 2015;70(11):1393–1405. Doi:10.1111/all.12698.
  80. Leysen J., Sabato V., Verweij M.M., et al. The basophil activation test in the diagnosis of immediate drug hypersensitivity. Exp. Rev. Clin. Immunol. 2011;7(3):349–355. Doi:10.1586/eci.11.14.
  81. De Week A.L., Sanz M.L., Gamboa P.M., et al. Diagnosis of immediate-type β-lactam allergy in vitro by flow-cytometric basophil activation test and sulfidoleukotriene production: a multicenter study. J. Investig. Allerg. Clin. Immunol. 2009;19(2):91109.
  82. Saito N., Abe R., Yoshioka N., et al. Prolonged elevation of serum granulysin in drug-induced hypersensitivity syndrome. Br. J. Dermatol. 2012;167(2):452–453. Doi: 10.1111/j.1365-2133.2012.10921.x.
  83. Feldmeyer L., Heidemeyer K., Yawalkar N. Acute generalized exanthematous pustulosis: pathogenesis, genetic background, clinical variants and therapy. Intern. J. Mol. Sci. 2016;17(8):1214. Doi:10.3390/ijms17081214.
  84. Mallal S., Phillips E., Carosi G., et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 2008;358(6):568–579. Doi:10.1056/NEJMoa0706135.
  85. Phillips E.J., Chung W.H., Mockenhaupt M., et al. Drug hypersensitivity: pharmacogenetics and clinical syndromes. J. Allerg. Clin. Immunol. 2011;127(3):60–66. Doi: 10.1016/j.jaci.2010.11.046
  86. Colombo S., Rauch A., Rotger M., et al. The HCP5 single-nucleotide polymorphism: a simple screening tool for prediction of hypersensitivity reaction to abacavir. J. Infect. Dis. 2008;198(6):864–867. Doi:10.1086/591184.
  87. Wheatley L.M., Plaut M., Schwaninger J.M., et al. Report from the National Institute of Allergy and Infectious Diseases workshop on drug allergy. J. Allerg. Clin. Immunol. 2015;136(2):262–271, e262. Doi:10.1016/j.jaci.2015.05.027.
  88. Chung W.H., Hung S.I., Hong H.S., et al. Medical genetics: a marker for Stevens–Johnson syndrome. Nature. 2004;428(6982):486. Doi:10.1038/428486a.
  89. Locharernkul C., Loplumlert J., Limotai C., et al. Carbamazepine and phenytoin induced Stevens–Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia. 2008;49(12):2087–2091. Doi:10.1111/j.1528-1167.2008.01719.x.
  90. Mehta T.Y., Prajapati L.M., Mittal B., et al. Association of HLA-B*1502 allele and carbamazepine-induced Stevens–Johnson syndrome among Indians. Indian J. Dermatol. Venereol. Leprol. 2009;75(6):579–582. Doi:10.4103/0378-6323.57718.
  91. Tangamornsuksan W., Chaiyakunapruk N., Somkrua R., et al. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 2013;149(9):1025–1032. Doi:10.1001/jamadermatol.2013.4114.
  92. Pirmohamed M., Ostrov D.A., Park B.K. New genetic findings lead the way to a better understanding of fundamental mechanisms of drug hypersensitivity. J. Allerg. Clin. Immunol. 2015;136(2):236–244. Doi:10.1016/j.jaci.2015.06.022.
  93. Hung S.I., Chung W.H., Liou L.B., et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl. Acad. Sci. USA. 2005;102(11):4134–4139. Doi:10.1073/pnas.0409500102.
  94. Lonjou C., Borot N., Sekula P., et al. A European study of HLA-B in Stevens–Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet. Genomics. 2008;18(2):99–107. Doi:10.1097/FPC.0b013e3282f3ef9c.
  95. Elzagallaai A.A., Rieder M.J. In vitro testing for diagnosis of idiosyncratic adverse drug reactions: implications for pathophysiology. Br. J. Clin. Pharmacol. 2015;80(4):889–900. Doi:10.1111/bcp.12505.
  96. Rive C.M., Bourke J., Phillips E.J. Testing for drug hypersensitivity syndromes. Clin. Biochem. Rev. 2013;34(1):15–38.
  97. Porebski G. In vitro assays in severe cutaneous adverse drug reactions: are they still research tools or diagnostic tests already? Intern. J. Mol. Sci. 2017;18(8):1737. Doi: 10.3390/ijms18081737.
  98. Nagao-Dias A.T., Teixeira F.M., Coelho H.L. Diagnosing immune-mediated reactions to drugs. Allerg. Immunopathol. 2009;37(2):98–104.
  99. Kano Y., Hirahara K., Mitsuyama Y., et al. Utility of the lymphocyte transformation test in the diagnosis of drug sensitivity: dependence on its timing and the type of drug eruption. Allerg. 2007;62(12):1439–1444. Doi: 10.1111/j.1398-9995.2007.01553.x.
  100. Pichler W.J., Tileh J. The lymphocyte transformation test in for the diagnosis of drug hypersensitivity. Allerg. 2004;59(8):809–20. Doi:10.1111/j.1398–9995.2004.00547.x.
  101. Beeler A., Pichler W.J. In vitro Tests of T-Cell-Mediated Drug Hypersensitivity. Drug Hypersensensivity. Basel, Karger, 2007. P. 380–390.Doi:10.1111/j.1398–9995.2007.01516.x.
  102. Porebski G., Gschwend-Zawodniak A., Pichler W.J. In vitro diagnosis of T cell-mediated drug allergy. Clin. Exp. Allerg. 2011;41(4):461–470.Doi:10.1111/j.1365–2222.2011.03701.x.
  103. Srinoulprasert Y., Pichler W.J. Enhancement of drugspecific lymphocyte proliferation using CD25hi-depleted CD3+effector cells. Intern. Arch. Allerg. Immunol. 2014;163(3):198–205. Doi:10.1159/000358491. Epub. 2014;13.
  104. Kato K., Kawase A., Azukizawa H., et al. Novel interferon-γ enzyme-linked immunospot assay using activated cells for identifying hypersensitivity-inducing drug culprits. J. Dermatol. Sci. 2017;86(3):222–229.Doi:10.1016/j.jdermsci.2017.03.007.
  105. Chung W.H., Pan R.Y., Chu M.T., et al. Oxypurinolspecific T cells possess preferential TCR clonotypes and express granulysin in allopurinol-induced severe cutaneous adverse reactions. J. Investig. Dermatol. 2015;135(9):2237–2248. Doi:10.1038/jid.2015.165.
  106. Barbaud A., Collet E., Milpied B., et al. A multicentre study to determine the value and safety of drug patch tests for the three main classes of severe cutaneous adverse drug reactions. Br. J. Dermatol. 2013;168(3):555–562.Doi:10.1111/bjd.12125.
  107. Lin Y.T., Chang Y.C., Hui R.C., et al. A patch testing and cross-sensitivity study of carbamazepine-induced severe cutaneous adverse drug reactions. J. Eur. Acad. Dermatol. Venerol. 2013;27(3):356–64. Doi:10.1111/j.1468-3083.2011.04418.x.
  108. 107. Torres M.J., Romano A., Celik G., et al. Approach to the diagnosis of drug hypersensitivity reactions: similarities and differences between Eur. North Am.. Clin. Translat. Allerg. 2017;7(1):7. Doi:10.1186/s13601-017-0144-0.
  109. Joint Task Force on Practice Parameters, American Academy of Allerg., Asthma and Immunology et al. Drug allergy: an updated practice parameter. Ann. Allerg. Asthma Immunol. 2010;105(4):259–73.e78.Doi:10.1016/j.anai.2010.08.002.
  110. Brockow K., Romano A., Blanca M., et al. General considerations for skin test procedures in the diagnosis of drug hypersensitivity. Allerg. 2002;57(1):45–51.
  111. Duong T.A., Valeyrie-Allanore L., Wolkenstein P., Chosidow O. Severe cutaneous adverse reactions to drugs. Lancet. 2017;390(10106):1996–2011. Doi:10.1016/S0140-6736(16)30378-6.


Об авторах / Для корреспонденции


Айтбаев К.А. – д.м.н., профессор, заведующий лабораторией патологической физиологии НИИ молекулярной биологии и медицины; Бишкек, Кыргызстан.
Муркамилов И.Т. – к.м.н., нефролог, и.о. доцента кафедры факультетской терапии КГМА им. И.К. Ахунбаева; Бишкек, Кыргызстан.
Е-mail: murkamilov.i@mail.ru
Фомин В.В. – д.м.н., профессор, член-корреспондент РАН, проректор по клинической работе и дополнительному профессиональному образованию, директор клиники факультетской терапии им. В.Н. Виноградова, заведующий кафедрой факультетской терапии № 1, ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» МЗ РФ; Москва, Россия.
Алымкулова А.Д. – научный сотрудник лаборатории патологической физиологии НИИ молекулярной биологии и медицины; Бишкек, Кыргызстан.
Талайбеков М.Т. – аспирант кафедры оториноларингологии КРСУ им. Б.Н. Ельцина; Бишкек, Кыргызстан.
Муркамилова Ж.А. – врач-терапевт, Центр семейной медицины № 7; Бишкек, Кыргызстан.


Бионика Медиа