Гиперфосфатемия – значение и методы коррекции


DOI: https://dx.doi.org/10.18565/nephrology.2019.2.69-75

Е.В. Шутов, С.М. Сороколетов

1) ГБУЗ «Городская клиническая больница им. С.П. Боткина» ДЗ г. Москвы, Москва, Россия; 2) ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» МЗ РФ, кафедра нефрологии и гемодиализа, Москва, Россия
В представленном обзоре обсуждаются механизмы регулирования уровня фосфора в крови. Значение гиперфосфатемии для развития осложнений у больных ХБП. Пути коррекции нарушений фосфорного баланса.
Ключевые слова: гиперфосфатемия, хроническая болезнь почек, фосфатсвязывающие препараты, фактор роста фибробластов, белок Клото

Литература


  1. Taniguchi M., Fukagawa M., Fujii N., Hamano T., Shoji T., Yokoyama K.,Nakai S., Shigematsu T., Iseki K., Tsubakihara Y. Committee of Renal Data Registry of the Japanese Society for Dialysis Therapy. Serum phosphate and calcium should be primarily and consistently controlled in prevalent hemodialysis patients. Ther. Apher. Dial. 2013;17(2):221–228.
  2. Isakova T., Wahl P., Vargas G.S., Gutiérrez O.M., Scialla J., Xie H., Appleby D., Nessel L., et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–1378.
  3. Tatsumi S., Miyagawa A., Kaneko I., Shiozaki Y., Segawa H., Miyamoto K. Regulation of renal phosphate handling: inter-organ communication in health and disease. J. Bone Miner Metab. 2016;34(1):1–10.
  4. Kuro-O M. Calciprotein particle (CPP): a true culprit of phosphorus woes? Nefrologia. 2014;34:1–4.
  5. Haut L.L., Alfrey A.C., Guggenheim S. et al. Renal toxicity of phosphate in rats. Kidney Int. 1980;17:722–731.
  6. Bertram J.F., Douglas-Denton R.N., Diouf B. et al. Human nephron number: implications for health and disease. Pediatr. Nephrol. 2011;26(9):1529–1533.
  7. Zhou X.J., Rakheja D., Yu X. et al. The aging kidney. Kidney Int. 2008;74:710–720.
  8. Riminucci M., Collins M.T., Fedarko N.S., et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. Journal of Clinical Investigation. 2003;112(5):683–692.
  9. Vervloet M.G., Massy Z.A., Brandenburg V.M., Mazzaferro S., Cozzolino M., Ureña-Torres P., Bover J., Goldsmith D. CKD-MBD Working Group of ERA-EDTA. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders. Lancet Diabetes Endocrinol. 2014;2(5):427–436.
  10. Scialla J.J., Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat. Rev. Nephrol. 2014;10(5):268–278.
  11. Ben-Dov I.Z., Galitzer H., Lavi-Moshayoff V., Goetz R., Kuro-o M., Mohammadi M., Sirkis R., Naveh-Many T., Silver J. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 2007;117(12):4003–4008.
  12. Blau J.E., Collins M.T. The PTH-Vitamin D-FGF23 axis. Rev. Endocr. Metab. Disord. 2015;16(2):165–174.
  13. Faul C., Amaral A.P., Oskouei B. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 2011;121(11):4393–4408.
  14. Grabner A., Amaral A.P., Schramm K. et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell. Metab. 2015;22(6):1020–1032.
  15. Bacchetta J., Sea J.L., Chun R.F., et al. Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes. J. Bone Miner Res. 2013;28(1):46–55.
  16. Andrukhova O., Slavic S., Smorodchenko A. et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med. 2014;6(6):744–759.
  17. Block G.A., Hulbert-Shearon T.E., Levin N.W., Port F.K. Association of serum phosphorus and calcium × phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 1998;31(4):607–617.
  18. Tonelli M., Curhan G., Pfeffer M., Sacks F., Thadhani R., Melamed M.L., Wiebe N.,Muntner P. Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation. 2009;120(18):1784–1792.
  19. Foley R.N., Collins A.J., Ishani A., Kalra P.A. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 2008;156(3):556–563.
  20. Dhingra R., Sullivan L.M., Fox C.S., Wang T.J., D’Agostino R.B., Sr, Gaziano J.M.,Vasan R.S. Relations of serum phosphorus and calcium levels to the incidenceof cardiovascular disease in the community. Arch. Intern. Med. 2007;167(9):879–885.
  21. Adeney K.L., Siscovick D.S., Ix J.H., Seliger S.L., Shlipak M.G., Jenny N.S., Kestenbaum B.R. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J. Am. Soc. Nephrol. 2009;20(2):381–387.
  22. Lau W.L., Linnes M., Chu E.Y., Foster B.L., Bartley B.A., Somerman M.J.,Giachelli C.M. High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease. Nephrol. Dial. Transplant. 2013;28(1):62–69.
  23. Forster I.C., Hernando N., Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects. Med. 2013;34(2–3):386–395.
  24. Wallingford M.C., Chia J., Leaf E.M., Borgeia S., Chavkin N.W., Sawangmake C.,Marro K., Cox T.C., Speer M.Y., Giachelli C.M. SLC20A2 deficiency in mice leads to elevated phosphate levels in cerbrospinal fluid and glymphatic pathway-associated arteriolar calcification, and recapitulates human idiopathic basal ganglia calcification. Brain Pathol. 2016.
  25. Li X., Yang H.Y., Giachelli C.M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res. 2006;98(7):905–912.
  26. Chavkin N.W., Chia J.J., Crouthamel M.H., Giachelli C.M. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp. Cell. Res. 2015;333(1):39–48.
  27. Shanahan C.M., Crouthamel M.H., Kapustin A., Giachelli C.M. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 2011;109(6):697–711.
  28. Giachelli C.M. The emerging role of phosphate in vascular calcification. Kidney Int. 2009;75(9):890–897.
  29. Paloian N.J., Giachelli C.M. A current understanding of vascular calcification in CKD. Am. J. Physiol. Renal. Physiol. 2014;307(8):F891–F900.
  30. Shimada T., Kakitani M., Yamazaki Y., Hasegawa H., Takeuchi Y., Fujita T.,Fukumoto S., Tomizuka K., Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 2004;113(4):561–568.
  31. Lau W.L., Leaf E.M.., Hu M.C., Takeno M.M., Kuro-o M., Moe O.W., Giachelli C.M. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82(12):1261–1270.
  32. Hu M.C., Shi M., Zhang J., Quiñones H., Griffith C., Kuro-o M., Moe O.W. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 2011;22(1):124–136.
  33. Leunissen E.H., Nair A.V., Büll C., Lefeber D.J., van Delft F.L., Bindels R.J.,Hoenderop J.G. The epithelial calcium channel TRPV5 is regulated differentially by klotho and sialidase. J. Biol. Chem. 2013;288(41):29238–29246.
  34. Wolf M.T., An S.W., Nie M., Bal M.S., Huang C.L. Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms. J. Biol. Chem. 2014;289(52):35849–35857.
  35. Kurosu H., Yamamoto M., Clark J.D., Pastor J.V., Nandi A., Gurnani P., McGuinness O.P., Chikuda H., Yamaguchi M., Kawaguchi H., Shimomura I., Takayama Y., Herz J., Kahn C.R., Rosenblatt K.P., Kuro-o M. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–1833.
  36. Wang Y., Sun Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension. 2009;54(4):810–817.
  37. Mencke R., Harms G., Mirković K., Struik J., Van Ark J., Van Loon E., Verkaik M., De Borst M.H., Zeebregts C.J., Hoenderop J.G., Vervloet M.G.,Hillebrands J.L. NIGRAM Consortium. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc. Res. 2015;108(2):220–231.
  38. Adeney K.L., Siscovick D.S., Ix J.H., Seliger S.L., Shlipak M.G., Jenny N.S., Kestenbaum B.R. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J. Am. Soc. Nephrol. 2009;20(2):381–387.
  39. Donate-Correa J., Mora-Fernández C., Martínez-Sanz R., Muros-de-Fuentes M., Pérez H., Meneses-Pérez B., Cazaña-Pérez V., Navarro-González J.F.Expression of FGF23/KLOTHO system in human vascular tissue. Int. J. Cardiol. 2013;165(1):179–183.
  40. Navarro-González J.F., Donate-Correa J., Muros de Fuentes M., Pérez-Hernández H., Martínez-Sanz R., Mora-Fernández C. Reduced Klotho is associated with the presence and severity of coronary artery disease. Heart. 2014;100(1):34–40.
  41. Fang Y., Ginsberg C., Seifert M., Agapova O., Sugatani T., Register T.C., Freedman B.I., Monier-Faugere M.C., Malluche H., Hruska K.A. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J. Am. Soc. Nephrol. 2014;25(8):1760–1773.
  42. Paloian N.J., Giachelli C.M. A current understanding of vascular calcification in CKD. Am. J. Physiol. Renal. Physiol. 2014;307(8):F891–F900.
  43. Fang Y., Ginsberg C., Sugatani T., Monier-Faugere M.C., Malluche H., Hruska K.A. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142–150.
  44. Fang Y., Ginsberg C., Sugatani T., Monier-Faugere M.C., Malluche H., Hruska K.A. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142–150.
  45. Mitani H., Ishizaka N., Aizawa T., Ohno M., Usui S., Suzuki T., Amaki T.,Mori I., Nakamura Y., Sato M., Nangaku M., Hirata Y., Nagai R. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002;39(4):838–843.
  46. Kuro-OM. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat. Rev. Nephrol 2013;9:650–660.
  47. Shalhoub V., Shatzen E.M., Ward S.C., Davis J., Stevens J., Bi V., et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Invest. 2012;122:2543–2553.
  48. Faul C., Amaral A.P., Oskouei B., Hu M.C, Sloan A., Isakova T., et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 2011;121:4393–4408.
  49. Yanochko G.M., Vitsky A., Heyen J.R., Hirakawa B., Lam J.L.,May J., et al. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction. Toxicol. Sci. 2013;135:451–464.
  50. Moe S.M., Chertow G.M., Parfrey P.S., Kubo Y., Block G.A., Correa-Rotter R.,et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation. 2015;132:27–39.
  51. Ketteler M., Block G.A., Evenepoel P. et al. Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD). Guideline Update: what’s changed and why it matters. Kidney Int. 2017;92:26–36.
  52. Isakova T., Nickolas T.L., Denburg M., et al. KDOQI US Commentary on the 2017 KDIGO Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Am. J. Kidney Dis. 2017;70(6):737–751.
  53. Schmid H., Hartmann B., Schiffl H. Adherence to prescribed oral medication in adult patients undergoing chronic hemodialysis: a critical review of the literature. Eur. J. Med. Res. 2009;14(5):185–190.
  54. Karamanidou C., Clatworthy J., Weinman J., Horne R. A systematic review of the prevalence and determinants of nonadherence to phosphate binding medication in patients with end-stage renal disease. BMC Nephrol. 2008;9:2.
  55. Covic A., Rastogi A. Hyperphosphatemia in patients with ESRD: assessing the current evidence linking outcomes with treatment adherence. BMC Nephrol. 2013;14(1):153.
  56. Ghimire S., Castelino R.L., Lioufas N.M., Peterson G.M., Zaidi S.T. Nonadherence to medication therapy in haemodialysis patients: a systematic review. PLoS One. 2015;10(12):e0144119.
  57. Lynch K.E., Lynch R., Curhan G.C., Brunelli S.M. Prescribed dietary phosphate restriction and survival among hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011;6(3):620–629.
  58. Kalantar-Zadeh K. Patient education for phosphorus management in chronic kidney disease. Patient Prefer Adherence. 2013;7:379–390.
  59. Waheed A.A., Pedraza F., Lenz O., Isakova T. Phosphate control in end-stage renal disease: barriers and opportunities. Nephrol. Dial. Transplant. 2013;28(12):2961–2968.
  60. Lambert K., Mullan J., Mansfield K. An integrative review of the methodology and findings regarding dietary adherence in end stage kidney disease. BMC Nephrol. 2017;18:318.
  61. Chan Y.M., Zalilah M.S., Hii S.Z. Determinants of compliance behaviours among patients undergoing hemodialysis in Malaysia. PLoS One. 2012;7(8):e41362.
  62. Hou S.H., Zhao J., Ellman C.F., et al. Calcium and phosphorus fluxes during hemodialysis with low calcium dialysate. Am. J. Kidney Dis. 1991;18(2):217–224.
  63. Milazi M., Bonner A., Douglas C. Effectiveness of educational or behavioral interventions on adherence to phosphate control in adults receiving hemodialysis: a systematic review. JBI Database System. Rev. Implement Rep. 2017;15(4):971–1010.
  64. Denhaerynck K., Manhaeve D., Dobbels F., Garzoni D., Nolte C., De Geest S. Prevalence and consequences of nonadherence to hemodialysis regimens. Am. J. Crit. Care. 2007;16(3):222–235.
  65. Tohme F., Mor M.K., Pena-Polanco J., et al. Predictors and outcomes of non-adherence in patients receiving maintenance hemodialysis. Int. Urol. Nephrol. 2017;49(8):1471–1479.
  66. Kutner N.G., Zhang R., McClellan W.M., Cole S.A. Psychosocial predictors of non-compliance in haemodialysis and peritoneal dialysis patients. Nephrol. Dial. Transplant. 2002;17(1):93–99.
  67. O’Brien M.E. Compliance behavior and long-term maintenance dialysis.Am. J. Kidney Dis. 1990;15(3):209–214.
  68. Tonelli M., Pannu N., Manns B. Oral phosphate binders in patients with kidney failure. N. Engl. J.Med. 2010;362:1312–1324.
  69. Hjemås B.J., Bøvre K., Mathiesen L. Interventional study to improve adherence to phosphate binder treatment in dialysis patients. BMC Nephrol. 2019;17;20(1):178.
  70. Locatelli F., Del Vecchio L., Violo L., Pontoriero G. Phosphate binders for the treatment of hyperphosphatemia in chronic kidney disease patients on dialysis: a comparison of safety profiles. Expert. Opin. Drug. Saf. 2014;13(5):551–561.
  71. Covic A., Floege Jü., Ketteler M., Sprague St. Iron-related parameters in dialysis patients treated with sucroferric oxyhydroxide. Nephrol. Dial. Transplant. 2016;1–9.
  72. Coyne D.W., Ficociello L.H., Parameswaran V., Anderson L., Vemula S., Ofsthun J., Mullon C., Maddux F.W., Kossmann R.J., Sprague S.M. Real-world effectiveness of sucroferric oxyhydroxide in patients on chronic hemodialysis: A retrospective analysis of pharmacy data. Clin. Nephrol. 2017;88(8):59–67.
  73. Fouque D., Boletis I., Francisco A.,Vervloet M., Kalra Ph., Ketteler M. et al. Real-world safety and effectiveness of sucroferric oxyhydroxide in dialysis patients: an interim analysis of the VERIFIE study. Nephrol. Dial. Transplant. 2018;33(1):242.


Об авторах / Для корреспонденции


Шутов Е.В. – д.м.н., зав. отделением нефрологии № 12 ГБУЗ «ГКБ им. С.П. Боткина» ДЗМ, профессор кафедры нефрологии и гемодиализа ФГБОУ ДПО РМАПО; Москва, Россия. E-mail: shutov_e_v@mail.ru
Сороколетов С.М. – д.м.н., зам. главного врача ГБУЗ «ГКБ им. С.П. Боткина» ДЗМ; Москва, Россия


Бионика Медиа