Клинико-генетическая гетерогенность первичной гипероксалурии 1-го типа

С.В. Папиж, Л.С. Приходина, Е.Ю. Захарова, M. Nagel

ФГУ “МНИИ педиатрии и детской хирургии” Минздравсоцразвития России, Москва; Медико-генетический научный центр РАМН, Москва; Центр нефрологии и нарушений обмена веществ; Вейссвассер, Германия
Обсуждаются течение, прогноз и возможности лечения первичной гипероксалурии с демонстрацией оригинального клинического наблюдения.


1. Игнатова М.С., Вельтищев Ю.Е. Детская нефрология. Руководство для врачей. Л.: Медицина. 1989.
2. Coward R. Epidemiology of paediatric renal stone disease in the UK. Arch. Dis. Child. 2003;88:962–965.
3. Danpure C.J., Jennings P.R. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. Clin. Sci. 1986;70(5):417–425.
4. Purdue P.E., Lumb M.J., Fox M. et al. Characterisation and chromosomal mapping of a genomic clone encoding human alanine glyoxylate aminotransferase. Genomics 1991;10:34–42.
5. Hoppe B., Langman C. A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr Nephrol 2003; 18: 98–91.
6. Mistry J.D.C., Chalmers R.A. Hepatic D-glycerate dehydrogenase and glyoxylate reductase deficiency in primary hyperoxaluria type 2. Biochemical Society Transactions 1988;16:626.
7. Rumsby G., Cregeen D.P. Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase. Biochem Biophys Acta 1999; 1446:383–388.
8. Cramer S.D., Ferree P.M., Lin K. et al. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Mol. Genet. 1999;8:2063–2069.
9. Belostotsky R., Seboun E., Idelson G.H. et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 2010;87(3):392–399.
10. Cochat P., Deloraine A., Rolity M. et al. Epidemiology of primary hyperoxaluria type 1. Nephrol. Dial. Transplant. 1995;10(8):3–7.
11. Kopp N., Leumann E. Changing pattern of primary hyperoxaluria in Switzerland. Nephrol. Dial. Transplant. 1995;10(12):2224–2227.
12. Van Woerden C.S., Jaap W., Groothoff F. et al. Clinical implications of mutation analysis in primary hyperoxaluria type 1. Kidney Int. 2004; 66:746–750.
13. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) Annual report 2010. The EMMES Corporation, Rockville, MD.
14. Lewis M., Shaw J., Reid C. et al. Demography and management of childhood established renal failure in the UK. Nephrol. Dial. Transplant. 2007; 22(7):65–75.
15. Hattori S., Yosioka K., Honda M. et al. Japanese Society for Pediatric Nephrology. The 1998 report of the Japanese National Registry data on pediatric end-stage renal disease patients. Pediatr. Nephrol. 2002;
16. Oxalosis and Hyperoxaluria Foundation, 2009, www.ohf.org.
17. Cochat P., Koch Nogueira P.C., Mahmoud A.M. et al. Primary hyperoxaluria in infants: medical, ethical and economic issues. J. Pediatr. 1999; 135:746–750.
18. Millan M.T., Berquist W.E., So S.K. et al. One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: a single-center experience. Transplantation 2003;76:1458–1463.
19. Harambat J., Fargue S., Acquaviva C. et al. Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int 2010;77(5):443–449.
20. Lieske J.C., Monico C.G., Holmes W.S. et al. International registry for primary hyperoxaluria. Am. J. Nephrol. 2005;25:290–96.
21. Toussaint C., Vienne A., De Pauw L. et al. Combined liver-kidney transplantation in primary hyperoxaluria type 1. Bone histopathology and oxalate body content. Transplantation 1995;59(12):1700–1704.
22. Day D.L., Scheinman J.I., Mahan J. Radiological aspects of primary hyperoxaluria. Am. J. Roentgenol. 1986;146(2):395–401.
23. Leumann E.P., Dietl A., Matasovic A. Urinary oxalate and glycolate excretion in healthy infants and children. Pediatr. Nephrol. 1990;4(5):493–97.
24. Hoppe B., Leumann E., Milliner D. Urolithiasis in childhood. In: Geary D, Schafer F (eds). Comprehensive Pediatric Nephrology. Elsevier/WB Saunders: New York, 2008;499–52.
25. Danpure C.J. Primary hyperoxaluria. In: Scriver C.R., Beaudet A.L., Sly W.S., Valle D., eds. The Metabolic and Molecular Bases of Inherited Disease. 8 ed. Vol 2. Том 2. New York: McGraw-Hill; 2001. 3323–67.
26. Daudon M., Jungers P. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron. Physiol. 2004;98:31–36.
27. Wong P.N., Law E.L.K., Tong G.M.W. et al. Diagnosis of primary hyperoxaluria type 1 by determination of peritoneal dialysate glycolic acid using standard organic-acids analysis method. Perit. Dial. Int. 2003;23:210–213.
28. Takada Y., Kaneko N., Esumi H. et al. Human peroxisomal L-alanine: glyoxylate aminotransferase. Evolutionary loss of a mitochondrial targeting signal by point mutation of the initiation codon. Biochem. J. 1990; 268:517–520.
29. Williams E.L., Acquaviva C., Amoroso A. et al. Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum. Mutat. 2009;30:910–917.
30. Niaudet P. Primary hyperoxaluria. Orphanet encyclopedia. March 2004, www.orpha.net/data/patho/GB/uk-oxalos.pdf.
31. Small K.W., Scheinman J., Klintworth G.K. A clinicopathological study of ocular involvement in primary hyperoxaluria. N. Engl. J. Med. 1994;331:1553.
32. Frishberg Y., Rinat C., Shalata A. et al. Intra-familial clinical heterogeneity: absence of genotype-phenotype correlation in primary hyperoxaluria type 1 in Israel. Am. J. Nephrol. 2005;25:269–275.
33. Hoppe B., Danpure C.J., Rumsby G. et al. A vertical (pseudodominant) pattern of inheritance in the autosomal recessive disease primary hyperoxaluria type 1: lack of relationship between genotype, enzymatic phenotype and disease severity. Am. J. Kidney Dis. 1997;29:36–44.
34. Danpure C.J. Primary hyperoxaluria: from gene defects to designer drugs? Nephrol Dial Transplant 2005;20:1525–1529.
35. Monico C.G., Rosetti S., Olson J.B. et al. Pyridoxine effect in type 1 primary hyperoxaluria is associated with the commonest mutant allele. Kidney Int. 2005;67:1704–1709.
36. Santana A., Salido E., Torres A. et al. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11Lcontaining alanine:glyoxylate aminotransferase. Proc Natl Acad Sci USA 2003;100(12):7277–7282.
37. Beck B., Hoppe B. Is there a genotype-phenotype correlation in primary hyperoxaluria type 1? Kidney International 2006;70:984–986.
38. Borghi L., Meschi T., Amato F. et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 1996;155:839–843.

39. Monico C.G., Rossetti S., Olson J.B. et al. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 2005;67:1704–1709.
40. Leumann E., Hoppe B., Neuhaus T. Management of primary hyperoxaluria: efficacy of oral citrate administration. Pediatr. Nephrol. 1993;7:207–211.
41. Hoppe B., Beck B., Gatter N. et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 2006; 70:1305–1311.
42. Illies F., Bonzel K.E., Wingen A.M. et al. Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int. 2006;70:1642–1648.
43. Diaz C., Catalinas F.G., de Alvaro F. et al. Long daily hemodialysis sessions correct systemic complications of oxalosis prior to combined liver-kidney transplantation: case report. Ther. Apher. Dial. 2004;8(1):52–55.
44. Van Woerden C.S., Groothoff J.W., Wanders R.J. et al. Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol. Dial. Transplant. 2003;18(2):273–279.
45. Cochat P., Fargue S., Harambat J. Primary hyperoxaluria type 1: strategy for organ transplantation. Curr. Opin. Organ. Transplant. 2010;15(5):590–593.
46. Malla I., Lysy P.A., Godefroid N. et al. Two-step transplantation for primary hyperoxaluria: cadaveric liver followed by living donor related kidney transplantation. Pediatr. Transplant. 2009;13:82–84.
47. Broyer M., Brunner F.P., Brynger H. et al. Kidney transplantation in primary oxalosis: Data from the EDTA registry. Nephrol. Dial. Transplant. 1990;5:332−336.
48. Lumb M.J., Danpure C.J. Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations. J. Biol. Chem. 2000; 275:36415–36422.
49. Galanti M., Contreras A. Excellent renal function and reversal of nephrocalcinosis 8 years after isolated liver transplantation in an infant with primary hyperoxaluria type 1. Pediatr. Nephrol. 2010;25:2359–2362.
50. Purdue P.E., Lumb M.J., Fox M. et al. Characterization and chromosomal mapping of a genomic clone encoding human alanine-glyoxylate aminotransferase. Genomics. 1991;10:34–42.
51. Coulter-Mackie M.B., Rumsby G. Genetic heterogeneity in primary hyperoxaluria type 1: Impact on diagnosis. Mol. Genet. Metab. 2004;83:38–46.
52. Flye M.W., Duffy B., Phelan D. et al. Protective effects of liver transplantation on a simultaneous transplanted kidney in a highly sensitized patient. Transplantation. 1990;50:1051–1054.
53. Parekh R.S., Smoyer W.E., Bunchman T.E. Diagnosis and management of primary hyperoxaluria type 1 in infancy. Pediatr. Transplant. 1997;1:48–54.
54. Gagnadoux M.F., Niaudet P. Long-term results of combined liver-kidney transplantation in six children with primary hyperoxaluria. Nephrol. Dial. Transplant (workshop abstract) 1999;14:2784–2789.
55. Zhang X., Roe S.M., Hou Y. et al. Crystal structure of alanine-glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. J. Mol. Biol. 2003;331:643–652.
56. Danpure C.J. Primary hyperoxaluria type 1: AGT mistargeting highlights the fundamental differences between the peroxisomal and mitochondrial protein import pathways. Biochimica et Biophysica Acta 2006;1763:1776–1784.
57. Quispe Gonzales J.O. et al. Delayed diagnosis of primary hyperoxaluria in a young patient with advanced chronic renal failure. Nefrologia 2011; 31(2):227–229.

Об авторах / Для корреспонденции

Папиж С.В. – научный сотрудник отделения наследственных и приобретенных болезней почек, ФГУ “МНИИ педиатрии и детской хирургии” Минздравсоцразвития России.
E-mail: papijsveta@mail.ru;
Приходина Л.С. – ведущий научный сотрудник отделения наследственных и приобретенных болезней почек, ФГУ “МНИИ педиатрии и детской хирургии” Минздравсоцразвития России, к.м.н.;
Захарова Е.Ю. – руководитель лаборатории наследственных болезней обмена веществ, Медико-генетический научный центр РАМН, к.м.н.;
Nagel М. – руководитель лаборатории молекулярной диагностики, Центр нефрологии и нарушений обмена веществ

Похожие статьи

Бионика Медиа