DOI: https://dx.doi.org/10.18565/nephrology.2022.2.78-81
1. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 GBD 2013 Mortality and Causes of Death Collaborators. Lancet. 2015;385(9963):117–71. doi: 10.1016/S0140-6736(14)61682-2. 2. Foreman K.J., Marquez N., Dolgert A., et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392(10159):2052–90. doi: 10.1016/S0140-6736(18)31694-5. 3. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–33. doi: 10.1016/S0140-6736(20)30045-3. 4. GBD 2017 Causes of Death Collaborators Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88. doi: 10.1016/S0140-6736(18)32203-7. 5. Levin A., Tonelli M., Bonventre J., et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet. 2017;390(10105):1888–917. doi: 10.1016/S0140-6736(17)30788-2. 6. Komaba H., Fukagawa M. Phosphate-a poison for humans? Kidney Int. 2016;90(4):753–63. doi: 10.1016/j.kint.2016.03.039. 7. Barreto F.C., Barreto D.V., Massy Z.A., Druke N.D. Strategies for Phosphate Control in Patients With CKD. Kidney Int. Rep. 2019;4:1043–56. doi: 10.1016/j.ekir.2019.06.002. 8. Cannata-Andía J.B., Fernández-Martín J.L., Locatelli F., et al. Use of phosphate-binding agents is associated with a lower risk of mortality. Kidney Int. 2013;84(5):998–1008. doi: 10.1038/ki.2013.185. 9. Fernández-Martín J.L., Martínez-Camblor P., Dionisi M.P., et al. Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study. Nephrol. Dial. Transplant. 2015;30(9):1542–51 doi: 10.1093/ndt/ gfv099. 10. Phannajit J., Wonghakaeo N., Takkavatakarn K., et al. The impact of phosphate lowering agents on clinical and laboratory outcomes in chronic kidney disease patients: a systematic review and meta-analysis of randomized controlled trials. J. Nephrol. 2022;35(2):473–91. doi: 10.1007/s40620-021-01065-3. 11. Di Iorio B., Bellasi A., Russoet D. Mortality in kidney disease patients treated with phosphate binders: a randomized study. CJASN. 2012;7(3):487–93. doi: 10.2215/CJN.03820411. 12. Yilmas M.I., Sonmez A., Saglam M., et al, Comparison of calcium acetate and sevelamer on vascular function and fibroblast growth factor 23 in CKD patients: a randomized clinical trial. Am. J. Kidney Dis. 2012;59:177–85. doi: 10.1053/j.ajkd.2011.11.007. 13. Smith E.R., Pan F.F.M., Hewitsonet T.D., et al. Effect of Sevelamer on Calciprotein Particles in Hemodialysis Patients: The Sevelamer Versus Calcium to Reduce Fetuin-A-Containing Calciprotein Particles in Dialysis (SCaRF) Randomized Controlled Trial. Kidney Int. Rep. 2020;5(9):1432–47. doi: 10.1016/j.ekir.2020.06.014. 14. Mason D.L., Godugu K., Nnani D., Mousaet S.A. Effects of sevelamer carbonate versus calcium acetate on vascular calcification, inflammation, and endothelial dysfunction in chronic kidney disease. Clin. Transl. Sci. 2022;15:353–60. doi: 10.1111/cts.13151. 15. Yubero-Serrano E., Woodward M., Poretsky L., et al. Effects of sevelamer carbonate on advanced glycation end products and antioxidant/pro-oxidant status in patients with diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 2015;10(5):759–66. doi: 10.2215/CJN.07750814. 16. Brønden A., Larsen E.L., Karstoftet K., et al. Changes in oxidative nucleic acid modifications and inflammation following one-week treatment with the bile acid sequestrant sevelamer: Two randomised, placebo-controlled trials. J. Diab. Its Complicat. 2020;34(2):107446. doi: 10.1016/j.jdiacomp. 17. Takkavatakarn K., Puapatanakul P., Phannajit J., et al. Protein-Bound Uremic Toxins Lowering Effect of Sevelamer in Pre-Dialysis Chronic Kidney Disease Patients with Hyperphosphatemia: A Randomized Controlled Trial. Toxins. 2021;13(10):688. doi: 10.3390/toxins13100688. 18. Floege J., Covic A.C., Ketteler M., et al. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients Kidney Int. 2014;86:638–47. doi: 10.1038/ki.2014.58. 19. Fan S., Ross С., Mitra S., et al. A randomized, crossover design study of sevelamer carbonate powder and sevelamer hydrochloride tablets in chronic kidney disease patients on haemodialysis. Nephrol. Dial. Transplant. 2009;24(12):3794–9. doi: 10.1093/ndt/gfp372. 20. Fishbane S., Delmez J., Suki W.N., et al. A randomized, parallel, open-label study to compare once-daily sevelamer carbonate powder dosing with thrice-daily sevelamer hydrochloride tablet dosing in CKD patients on hemodialysis. Am. J. Kidney Dis. 2010;55:307–15. doi: 10.1053/ j.ajkd.2009.10.051. 21. Isakova T., Wahl P., Vargaset G.S., et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370–8. doi: 10.1038/ki.2011.47. 22. Haffner D., Leifheit-Nestler M. Extrarenal effects of FGF23 Pediatr. Nephrol. 2017;32(5):753–65. doi: 10.1007/s00467-016-3505-3. 23. Isakova T., Cai X., Lee J., et al. Longitudinal FGF23 Trajectories and Mortality in Patients with CKDJ Am. Soc. Nephrol. 2018;29:579–90. doi: 10.1681/ASN.2017070772. 24. Есаян А.М., Ринд А.Р. Решение кардиоваскулярных проблем у пациентов на диализе - акцент на коррекцию гиперфосфатемии. Мед. совет. 2020;14:64–9. 25. Forfang D., Edwards D.P., Kalantar-Zadeh K. The Impact of Phosphorus Management Today on Quality of Life: Patient Perspectives. Kidney Med. 2022;4(4):100437. doi: 10.1016/j.xkme.2022.100437.