Провоспалительные цитокины в патогенезе, диагностике и лечении диабетической нефропатии


И.А. Бондарь, В.В. Климонтов, А.И. Симакова

ГОУ ВПО “Новосибирский государственный медицинский университет” Росздрава, Новосибирск
Обсуждаются современные представления о роли цитокинов в развитии и прогрессировании диабетической нефропатии. Обосновываются перспективы фармакологического воздействия на воспалительные цитокины с точки зрения торможения прогрессирования поражения почек при сахарном диабете.

Литература


1. Rossing P. The changing epidemiology of diabetic microangiopathy in type 1 diabetes. Diabetologia 2005;48(8):1439–1444.


2. Бондарь И.А., Климонтов В.В. Иммуновоспалительные механизмы в формировании диабетической нефропатии. Проблемы эндокринологии 2007; (2): 34–40.


3. Navarro-González J.F., Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol. 2008; 19 (3): 433–442.


4. Пальцев М.А., Иванов А.А., Северин С.Е. Межклеточные взаимодействия. М.: Медицина, 2003; 2-е изд.: 288 с.


5. Chow F.Y., Nikolic-Paterson D.J., Ozols E. et al. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocintreated mice. Kidney Int. 2006; 69(1): 73–80.


6. Hartner A., Veelken R., Wittmann M. et al. Effects of diabetes and hypertension on macrophage infiltration and matrix expansion in the rat kidney. BMC Nephrol. 2005; 6(1): 6.


7. Tone A., Shikata K., Sasaki M. et al. Erythromycin ameliorates renal injury via anti-inflammatory effects in experimental diabetic rats. Diabetologia 2005; 8(11): 2402–11.


8. Kelly D.J., Chanty A., Gow R.M. et al. Protein kinase Cbeta inhibition attenuates osteopontin expression, macrophage recruitment, and tubulointerstitial injury in advanced experimental diabetic nephropathy. J. Am. Soc. Nephrol. 2005; 6(6): 1654–1660.


9. Furuta T., Saito T., Ootaka T. et al. Intraglomerular immune cell infiltration and complement 3 deposits in membranoproliferative glomerulonephritis type I: a serial-biopsy study of 25 cases. Am. J. Kidney Dis. 1993; 21(5): 480–485.


10. Wada T., Furuichi K., Sakai N. et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000; 58(4): 1492–1499.


11. Бондарь И.А., Климонтов В.В., Надеев А.П. Мочевая экскреция провоспалительных цитокинов и трансформирующего фактора роста β на ранних стадиях диабетической нефропатии. Терапевтический архив 2008; (1): 52–56.


12. Nguyen D., Ping F., Mu W. et al. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton) 2006; 11(3): 226–231.


13. Dalla Vestra M., Mussap M., Gallina P. et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J. Am. Soc. Nephrol. 2005; 16 (1): 78–82.


14. Leinonen E.S., Hiukka A., Hurt-Camejo E. et al. Low-grade inflammation, endothelial activation and carotid intima-media thickness in type 2 diabetes. J. Intern. Med. 2004; 256(2): 119–127.


15. Hansen T.K., Forsblom C., Saraheimo M. et al. Association between mannose-binding lectin, high-sensitivity C-reactive protein and the progression of diabetic nephropathy in type 1 diabetes. Diabetologia 2010; 53(7): 1517–1524.


16. Бондарь И.А., Климонтов В.В., Надеев А.П. Уровень в сыворотке и почечная экспрессия молекул межклеточной адгезии ICAM-1 у больных с диабетической нефропатией. Сахарный диабет-2007; (3): 18–23.


17. Шестакова М.В., Кочемасова Т.В., Горелышева В.А. и др. Роль молекул адгезии (ICAM-1 и Е-селектина) в развитии диабетических микроангиопатий. Тераптевтический архив 2002; (6): 24–27.


18. Schram M.T., Chaturvedi N., Schalkwijk C.G. et al. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes – the EURODIAB Prospective Complications Study. Diabetologia 2005; 48(2): 370–378.


19. Amann B., Tinzmann R., Angelkort B. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care 2003; 26(8): 2421–2425.


20. Banba N., Nakamura T., Matsumura M. et al. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int. 2000; 58 (2): 684–690.


21. Gruden G., Setti G., Hayward A. et al. Mechanical stretch induces monocyte chemoattractant activity via an NF-kappaB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J. Am. Soc. Nephrol. 2005; 16(3): 688–696.


22. Viedt C., Dechend R., Fei J. et al. MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J. Am. Soc. Nephrol. 2002; 13(6): 1534–1547.


23. Lee F.T., Cao Z., Long D.M. et al. J. Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. Am. Soc. Nephrol. 2004; 15(8): 2139–2151.


24. Ota T., Takamura T., Ando H. et al. Preventive effect of cerivastatin on diabetic nephropathy through suppression of glomerular macrophage recruitment in a rat model. Diabetologia 2003; 46(6): 843–851.


25. Sassy-Prigent C., Heudes D., Mandet C. et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000; 49(3): 466–475.


26. Min D., Lyons J. G., Bonner J. et al. Mesangial cell-derived factors alter monocyte activation and function through inflammatory pathways: possible pathogenic role in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 2009; 297(5): 1229–1237.


27. Lynn E.G., Siow Y.L., O K. Very low-density lipoprotein stimulates the expression of monocyte chemoattractant protein-1 in mesangial cells. Kidney Int. 2000; 57(4): 1472–1483.


28. Ihm C.G., Park J.K., Hong S.P. et al. Circulating factors in sera or peripheral blood mononuclear cells in patients with membranous nephropathy or diabetic nephropathy. J. Korean. Med. Sci. 1997; 12(6): 539–544.


29. Tarabra E., Giunti S., Barutta F. et al. Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes 2009; 58(9): 2109–2118.


30. Lee E.Y., Chung C.H., Khoury C.C. et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. Am. J. Physiol. Renal. Physiol. 2009; 297(1): 85–94.


31. Giunti S., Tesch G.H., Pinach S. et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia. 2008; 51(1): 198–207.


32. Park J., Ryu D.R., Li J.J. et al. MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am. J. Physiol. Renal. Physiol. 2008; 295(3): F749–F757.


33. Wang S.N., LaPage J., Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int. 2000; 57(3): 1002–1014.


34. Mezzano S., Droguett A., Burgos M.E. et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int. Suppl. 2003; 86: S64–S70.


35. Qi W., Chen X., Zhang Y. et al. High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism. Nephrol. Dial. Transplant. 2007; 22(11): 3147–3153.


36. Navarro J.F., Milena F.J., Mora C. et al. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am. J. Nephrol. 2006; 26(6): 562–570.


37. Pawluczyk I.Z., Harris K.P. Cytokine interactions promote synergistic fibronec tin accumulation by mesangial cells. Kidney Int. 1998; 54(1): 62–70.


38. Vesey D.A., Cheung C.W., Cuttle L. et al. Interleukin-1beta induces human proximal tubule cell injury, alpha-smooth muscle actin expression and fibronectin production. Kidney Int. 2002; 62(1): 31–40.


39. Mensah-Brown E.P., Obineche E.N., Galadari S. et al. Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine 2005; 31(3): 180–190.


40. Kalantarinia K., Awad A.S., Siragy H.M. Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidney Int. 2003; 64(4): 1208–1213.


41. Chiarelli F., Cipollone F., Mohn A. et al. Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes. Diabetes Care. 2002; 25(10); 1829–1834.


42. Takebayashi K., Matsumoto S., Aso Y. et al. Association between circulating monocyte chemoattractant protein-1 and urinary albumin excretion in nonobese Type 2 diabetic patients. J. Diabetes Complications 2006; 20(2): 98–104.


43. МухинН.А., КозловскаяЛ.В., КутыринаИ.М. идр. Протеинурическое ремоделирование тубулоинтерстиция – мишень нефропротективной терапии при хронических заболеваниях почек. Тер. архив 2002; (6): 5–11.


44. Tashiro K., Koyanagi I., Saitoh A. et al. Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 2002; 16 (1): 1–4.


45. Wong C.K., Ho A.W., Tong P.C. et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin. Exp. Immunol. 2007; 149(1): 123–131.


46. Schram M.T., Chaturvedi N., Schalkwijk C.G. et al. EURODIAB Prospective Complications Study Group. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes – the EURODIAB Prospective Complications Study. Diabetologia 2005; 48(2): 370–378.


47. Moriwaki Y., Yamamoto T., Shibutani Y. et al. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy. Metabolism 2003; 52(5): 605–608.


48. Sahakyan K., Klein B., Lee K. et al. Inflammatory and endothelial dysfunction markers and proteinuria in persons with type 1 diabetes mellitus. Eur. J. Endocrinol. 2010; 162(6): 1101–1105.


49. Ng D.P., Fukushima M., Tai B. C. et al. Reduced GFR and albuminuria in Chinese type 2 diabetes mellitus patients are both independently associated with activation of the TNF-alpha system. Diabetologia 2008; 51(12): 2318–2324.


50. Niewczas M.A., Ficociello L.H., Johnson A.C. et al. Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in non-proteinuric patients with type 1 diabetes. Clin. J. Am. Soc. Nephrol. 2009; 4(1): 62–70.


51. Vendrell J., Broch M., Fernandez-Real J.M. et al. Tumour necrosis factor receptors (TNFRs) in Type 2 diabetes. Analysis of soluble plasma fractions and genetic variations of TNFR2 gene in a case-control study. Diabet. Med. 2005; 22(4): 387–392.


52. Lin J., Hu F.B., Mantzoros C. et al. Lipid and inflammatory biomarkers and kidney function decline in type 2 diabetes. Diabetologia 2010; 53(2): 263–267.


53. Wolkow P.P., Niewczas M.A., Perkins B. et al. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J. Am. Soc. Nephrol. 2008; 19(4): 789–797.


54. Moon J.Y., Jeong L., Lee S. et al. Association of polymorphisms in monocyte chemoattractant protein-1 promoter with diabetic kidney failure in Korean patients with type 2 diabetes mellitus. J. Korean. Med. Sci. 2007; 22(5): 810–814.


55. Nakajima K., Tanaka Y., Nomiyama T. et al. RANTES promoter genotype is associated with diabetic nephropathy in type 2 diabetic subjects. Diabetes Care 2003; 26(3): 892–898.


56. Prasad P., Tiwari A.K., Kumar K.M. et al. Association of TGFbeta1, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med. Genet. 2007; 8: 20.


57. Mokubo A., Tanaka Y., Nakajima K. et al. Chemotactic cytokine receptor 5 (CCR5) gene promoter polymorphism (59029A/G) is associated with diabetic nephropathy in Japanese patients with type 2 diabetes: a 10-year longitudinal study. Diabetes Res. Clin. Pract. 2006; 73(1): 89–94.


58. Ahluwalia T.S., Khullar M., Ahuja M. et al. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One. 2009; 4(4): e5168.


59. Kitamura A., Hasegawa G., Obayashi H. et al. Interleukin-6 polymorphism (-634C/G) in the promotor region and the progression of diabetic nephropathy in type 2 diabetes. Diabet. Med. 2002; 19(12): 1000–1005.


60. Kang Y.S., Lee M.H., Song H.K. et al. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. 2010; 78(9): 883–894.


61. Ninichuk V., Khandoga A.G., Segerer S. et al. The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice. Am J Pathol. 2007; 170(4): 1267–1276.


62. Shi Y., Du C., Zhang Y. et al. Suppressor of cytokine signaling-1 ameliorates expression of MCP-1 in diabetic nephropathy. Am. J. Nephrol. 2010; 31(5): 380–388.


63. Ye S.D., Zheng M., Zhao L.L. et al. Intensive insulin therapy decreases urinary MCP-1 and ICAM-1 excretions in incipient diabetic nephropathy. Eur. J. Clin. Invest. 2009; 39(11): 980–985.


64. Zheng M., Ye S., Zhai Z. et al. Rosiglitazone protects diabetic rats against kidney disease through the suppression of renal moncyte chemoattractant protein-1 expression. J. Diabetes Complications. 2009; 23(2): 124–129.


65. Siragy H. M., Awad A., Abadir P. et al. The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-alpha in diabetic rats. Endocrinology 2003; 144(6): 2229-2233.


66. Ogawa S., Kobori H., Ohashi N. et al. Angiotensin II Type 1 Receptor Blockers Reduce Urinary Angiotensinogen Excretion and the Levels of Urinary Markers of Oxidative Stress and Inflammation in Patients with Type 2 Diabetic Nephropathy. Biomark Insights. 2009; 4: 97–102.


67. Takebayashi K., Suetsugu M., Matsumoto S. et al. Effects of rosuvastatin and colestimide on metabolic parameters and urinary monocyte chemoattractant protein-1 in type 2 diabetic patients with hyperlipidemia. South Med. J. 2009; 102(4): 361–368.


Об авторах / Для корреспонденции


Бондарь И.А. – профессор, зав. кафедрой эндокринологии ГОУ ВПО “Новосибирский государственный медицинский университет” Росздрава, д.м.н.;
Климонтов В.В. – доцент кафедры эндокринологии ГОУ ВПО “Новосибирский государственный медицинский университет” Росздрава, д.м.н. Е-mail: klimontov@mail.ru;
Симакова А.И. – студент 6-го курса лечебного факультета ГОУ ВПО “Новосибирский государственный медицинский университет” Росздрава


Похожие статьи


Бионика Медиа