Инсулинорезистентность при хронической болезни почек


DOI: https://dx.doi.org/10.18565/nephrology.2022.4.49-58

Башмаков Ю.Э., Федосеев А.Н., Денисова В.Е.

1) Академия постдипломного образования ФГБУ «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий» Федерального медико-биологического агентства России, Москва, Россия; 2) Городская клиническая больница № 24, ДЗМ, Москва, Россия
Данная статья представляет собой обзор публикаций, касающихся особенностей проявлений инсулинорезистентности у больных хронической болезнью почек (ХБП).
Инсулинорезистентность у больных ХБП даже в отсутствие ожирения или сахарного диабета может быть следствием снижения почечной функции и может ускорять течение почечного заболевания.
К факторам играющим существенную роль в развитии инсулинорезистентности у больных ХБП относятся образ жизни, включающий снижение физической активности или нездоровое питание, и хроническое нарушение почечной функции, проявляющаеся метаболическим ацидозом, недстатком витамина D, почечной анемией и повышением концентрации уремических токсинов в крови. Ожирение и сахарный диабет в свою очередь ухудшают чувствительность тканей к инсулину.
В настоящее время не подвергается сомнению, что механизм развития ИР у больных ХБП включает хроническое системное воспаление, окислительный стресс, дизрегуляцию секреции адипокинов и активацию РААС.
Недорогие и практичные динамические (например, пероральный глюкозотолерантный тест) и статические (например, индекс инсулинорезистентности HOMA-IR) модели оценки инсулиночувствительности дают достаточно точную количественную оценку чувствительности к инсулину у пациентов с ХБП.
Инсулинорезистентность повышает риск сердечно-сосудистой заболеваемости и смертности и риск развития сердечно-сосудистых и почечных осложнений у больных ХБП, что вызывает необходимость своевременного принятия эффективных мер профилактики и лечения этого состояния, включающих модификацию образа жизни, целенаправленную фармакотерапию, а в терминальной стадии заболевания почек – заместительную почечную терапию.

Литература


1. Leyking S., Fliser D. Insulin resistance in CKD. Clin. J. Am. Soc. Nephrol. 2014;9(4):638–40.


2. Spoto B., Pisano A., Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am. J. Physiol. Renal. Physiol. 2016;311(6): F1087–108.


3. Wallace T.M., Matthews D.R. The assessment of insulin resistance in man. Diab. Med. 2002;19(7):527–34.


4. Reilly M.P., Rader D.J. The metabolic syndrome: more than the sum of its parts? Circulation. 2003;108(13):1546–51.


5. Abdelmannan D., Tahboub R., Genuth S., Ismail-Beigi F. Effect of dexamethasone on oral glucose tolerance in healthy adults. Endocr. Pract. 2010;16(5):770–77.


6. Boden G., Song W., Duan X., et al. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulumstress in rat liver.Obesity (Silver Spring). 2011;19(7):1366–73.


7. Pham H., Utzschneider K.M., de Boer I.H. Measurement of insulin resistance in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2011;20(6):640–46.


8. de Boer I.H., Mehrotra R. Insulin resistance in chronic kidney disease: a step closer to effective evaluation and treatment. Kidney Int. 2014;86(2):243–45.


9. Bammens B., Evenepoel P., Verbeke K., Vanrenterghem Y. Impairment of small intestinal protein assimilation in patients with end-stage renal disease: extending the malnutrition-inflammation-atherosclerosis concept. Am. J. Clin. Nutr. 2004;80(6):1536–43.


10. Kim Y., Lim J.H., Kim M.Y., et al. The Adiponectin Receptor Agonist AdipoRon Ameliorates Diabetic Nephropathy in a Model of Type 2 Diabetes. J. Am. Soc. Nephrol. 2018;29(4):1108–27.


11. Sato H., Terasaki T., Mizuguchi H., et al. Receptor-recycling model of clearance and distribution of insulin in the perfused mouse liver. Diabet. 1991;34(9):613–21.


12. Benzi L., Cecchetti P., Ciccarone A., et al. Insulin degradation in vitro and in vivo: a comparative study in men. Evidence that immunoprecipitable, partially rebindable degradation products are released from cells and circulate in blood. Diab. 1994;43(2):297–304.


13. Jochen A., Hays J., Lee M. Kinetics of insulin internalization and processing in adipocytes: effects of insulin concentration. J. Cell. Physiol. 1989;141(3): 527–34.


14. Duckworth W.C., Hamel F.G., Peavy D.E., et al. Degradation products of insulin generated by hepatocytes and by insulin protease. J. Biol. Chem. 1988;263(4):1826–33.


15. Satirapoj B., Watanakijthavonkul K., Supasyndh O. Safety and efficacy of low dose pioglitazone compared with standard dose pioglitazone in type 2 diabetes with chronic kidney disease: A randomized controlled trial. PLoS One. 2018;13(10):e0206722.


16. Goodarzi M.O., Cui J., Chen Y.D., et al. Fasting insulin reflects heterogeneous physiological processes: role of insulin clearance. Am. J. Physiol. Endocrinol. Metab. 2011;301(2):E402–8.


17. Matsuda M., DeFronzo R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diab. Care. 1999;22(9):1462–70.


18. Stumvoll M., Mitrakou A., Pimenta W., et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diab. Care. 2000;23(3):295–301.


19. Dave N., Wu J., Thomas S. Chronic Kidney Disease-Induced Insulin Resistance: Current State of the Field. Curr. Diab. Rep. 2018;18(7):44.


20. DeFronzo R.A., Tobin J.D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979;237(3): E214–23.


21. Kautzy-Willer A., Pacini G., Barnas U., et al. Intravenous calcitriol normalizes insulin sensitivity in uremic patients. Kidney Int. 1995;47:200–206.


22. Allegra V., Mengozzi G., Martimbianco L., Vasile A. Early and late effects of erythropoietin on glucose metabolism in maintenance hemodialysis patients. Am. J. Nephrol. 1996;16(4):304–308.


23. Rahhal M.N., Gharaibeh N.E., Rahimi L., Ismail-Beigi F. Disturbances in Insulin- Glucose Metabolism in Patients With Advanced Renal Disease With and Without Diabetes. J. Clin. Endocrinol. Metab. 2019;104(11):4949–66.


24. Matthews D.R., Hosker J.P., Rudenski A.S., et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diab. 1985;28(7):412–19.


25. Kosmas C.E., Silverio D., Tsomidou C., et al. The Impact of Insulin Resistance and Chronic Kidney Disease on Inflammation and Cardiovascular Disease. Clin. Med. Insights Endocrinol. Diab. 2018;11:1179551418792257.


26. Muniyappa R., Lee S., Chen H., Quon M.J. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am. J. Physiol. Endocrinol. Metab. 2008;294(1):E15–26.


27. Katz A., Nambi S.S., Mather K., et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000;85(7):2402–10.


28. Jia T., Huang X., Qureshi A.R., et al. Validation of insulin sensitivity surrogate indices and prediction of clinical outcomes in individuals with and without impaired renal function. Kidney Int. 2014;86(2):383–91.


29. de Brito-Ashurst I., Varagunam M., Raftery M.J., Yaqoob M.M. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 2009;20(9):2075–84.


30. Shinohara K., Shoji T., Emoto M., et al. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J. Am. Soc. Nephrol. 2002;13(7):1894–900.


31. Becker B., Kronenberg F., Kielstein J.T., et al. MMKD Study Group. Renalinsulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study. J. Am. Soc. Nephrol. 2005;16(4):1091–98.


32. Landau M., Kurella-Tamura M., Shlipak M.G., et al. Health, Aging and Body Composition Study. Correlates of insulin resistance in older individuals with and without kidney disease. Nephrol. Dial. Transplant. 201;26(9):2814–19.


33. Kobayashi S., Maesato K., Moriya H., et al. Insulin resistance in patients with chronic kidney disease. Am. J. Kidney Dis. 2005;45(2):275–80.


34. DeFronzo R.A., Alvestrand A., Smith D., et al. Insulin resistance in uremia. J. Clin. Invest. 1981;67(2):563–8.


35. Fliser D., Pacini G., Engelleiter R., et al. Insulin resistance and hyperinsulinemia are already present in patients with incipient renal disease. Kidney Int. 1998;53(5):1343–7.


36. Cersosimo E., Garlick P., Ferretti J. Insulin regulation of renal glucose metabolism in humans. Am. J. Physiol. 1999;276(1): E78–84.


37. Meyer C., Stumvoll M., Nadkarni V., et al. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J. Clin. Invest. 1998;102(3):619–24.


38. Koppe L., Pillon N.J., Vella R.E., et al. p-Cresyl sulfate promotes insulin resistance associated with CKD. J. Am. Soc. Nephrol. 2013;24(1):88–99.


39. Mak R.H. Intravenous 1,25 dihydroxycholecalciferol corrects glucose intolerance in hemodialysis patients. Kidney Int. 1992;41(4):1049–54.


40. Friedman J.E., Dohm G.L., Elton C.W., et al. Muscle insulin resistance in uremic humans: glucose transport, glucose transporters, and insulin receptors. Am. J. Physiol. 1991;261(1 Pt. 1): E87–94.


41. O’Brien J.P., Sharpe A.R. Abnormal carbohydrate metabolism in renal failure. Metab. 1965;14(12):1294–306.


42. Koppe L., Pelletier C.C., Alix P.M., et al. Insulin resistance in chronic kidney disease: new lessons from experimental models. Nephrol. Dial. Transplant. 2014;29(9):1666–74.


43. Kalantar-Zadeh K., Derose S.F., Nicholas S., et al. Burnt-out diabetes: impact of chronic kidney disease progression on the natural course of diabetes mellitus. J. Ren. Nutr. 2009;19(1):33–7.


44. Mühlhauser I., Toth G., Sawicki P.T., Berger M. Severe hypoglycemia in type I diabetic patients with impaired kidney function. Diab. Care. 1991;14(4):344–6.


45. Kobayashi S., Maejima S., Ikeda T., Nagase M. Impact of dialysis therapy on insulin resistance in end-stage renal disease: comparison of haemodialysis and continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant. 2000;15(1):65–70.


46. Agarwal R., Light R.P. Relationship between glycosylated hemoglobin and blood glucose during progression of chronic kidney disease. Am. J. Nephrol. 2011;34(1):32–41.


47. Cano N. Bench-to-bedside review: glucose production from the kidney. Crit. Care. 2002;6(4):317–21.


48. Fouque D., Kalantar-Zadeh K., Kopple J., et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73(4):391–8.


49. Rutsky E.A., McDaniel H.G., Tharpe D.L., et al. Spontaneous hypoglycemia in chronic renal failure. Arch. Intern. Med. 1978;138(9):1364–8.


50. Kulozik F., Hasslacher C. Insulin requirements in patients with diabetes and declining kidney function: differences between insulin analogues and human insulin? Ther. Adv. Endocrinol. Metab. 2013;4(4):113–21.


51. Biesenbach G., Raml A., Schmekal B., Eichbauer-Sturm G. Decreased insulin requirement in relation to GFR in nephropathic Type 1 and insulin-treated Type 2 diabetic patients. Diab. Med. 2003;20(8):642–5.


52. Mak R.H. 1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int. 1998;53(5):1353–7.


53. Guthoff M., Wagner R., Vosseler D., et al. Impact of end-stage renal disease on glucose metabolism-a matched cohort analysis. Nephrol. Dial. Transplant. 2017;32(4):670–6.


54. Sobngwi E., Enoru S., Ashuntantang G., et al. Day-to-day variation of insulin requirements of patients with type 2 diabetes and end-stage renal disease undergoing maintenance hemodialysis. Diab. Care. 2010;33(7):1409–12.


55. Phisitkul S., Khanna A., Simoni J., et al. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int. 2010;77(7):617–23.


56. Kalantar-Zadeh K., Kopple J.D., Regidor D.L., et al. A1C and survival in maintenance hemodialysis patients. Diab. Care. 2007;30(5):1049–55.


57. Sharma R., Rosner M.H. Glucose in the dialysate: historical perspective and possible implications? Hemodial. Int. 2008;12(2):221–26.


58. Xu H., Carrero J.J. Insulin resistance in chronic kidney disease. Nephrol. (Carlton). 2017;22(Suppl. 4):31–4.


59. Siew E.D., Ikizler T.A. Determinants of insulin resistance and its effects on protein metabolism in patients with advanced chronic kidney disease. Contrib. Nephrol. 2008;161:138–44.


60. Meyer C., Stumvoll M., Dostou J., et al. Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am. J. Physiol. Endocrinol. Metab. 2002;282(2):E428–34.


61. Mahajan A., Simoni J., Sheather S.J., et al. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 2010;78(3):303–9.


62. Mak R.H. Correction of anemia by erythropoietin reverses insulin resistance and hyperinsulinemia in uremia. Am. J. Physiol. 1996;270(5 Pt. 2):F839–44.


63. Shoelson S.E., Lee J., Goldfine A.B. Inflammation and insulin resistance. J. Clin. Invest. 2006;116(7):1793–801. Doi: 10.1172/JCI29069. Erratum in: J.. Clin. Invest. 2006;116(8):2308.


64. Zou C., Shao J. Role of adipocytokines in obesity-associated insulin resistance. J. Nutr. Biochem. 2008;19:277–86.


65. Banerjee D., Recio-Mayoral A., Chitalia N., Kaski J.C. Insulin resistance, inflammation, and vascular disease in nondiabetic predialysis chronic kidney disease patients. Clin. Cardiol. 2011;34:360–65.


66. Graf H., Prager R., Kovarik J., et al. Glucose metabolism and insulin sensitivity in patients on chronic hemodialysis. Metab. 1985;34(10):974–7.


67. Grimble R.F. Inflammatory status and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care. 2002;5:551–59.


68. Xu H., Barnes G.T., Yang Q., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 2003;112:1821–30.


69. Plomgaard P., Fischer C.P., Ibfelt T., et al. Tumor necrosis factor-alpha modulates human in vivo lipolysis. J. Clin. Endocrinol. Metab. 2008;93(2):543– 49.


70. Su D., Coudriet G.M., Hyun Kim D., et al. FoxO1 links insulin resistance to proinflammatory cytokine IL-1beta production in macrophages. Diab. 2009;58(11):2624–33.


71. Nieto-Vazquez I., Fernández-Veledo S., de Alvaro C., Lorenzo M. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diab. 2008;57(12):3211–21.


72. Chen L., Chen R., Wang H., Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int. J. Endocrinol. 2015;2015:508409.


73. Kern P.A., Ranganathan S., Li C., et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2001;280(5):E745–51.


74. Jamaluddin M.S., Weakley S.M., Yao Q., Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012;165(3):622–32.


75. Paz-Filho G., Mastronardi C., Wong M.L., Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J. Endocrinol. Metab. 2012;16(Suppl. 3):S549–55.


76. Meek T.H., Morton G.J. The role of leptin in diabetes: metabolic effects. Diab. 2016;59(5):928–32.


77. Enriori P.J., Evans A.E., Sinnayah P., Cowley M.A. Leptin resistance andobesity. Obesity (Silver Spring). 2006;14(Suppl. 5): S254–58.


78. Cioni A., Sordini C., Cavallini I., et al. Angiotensin receptor blocker telmisartan improves insulin sensitivity in peritoneal dialysis patients. Perit. Dial. Int. 2010;30(1):66–71.


79. Cesari M., Pahor M., Incalzi R.A. Plasminogen activator inhibitor-1 (PAI- 1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc. Ther. 2010;28(5):e72–91.


80. Nakamura T., Adachi H., Hirai Y., et al. Association of plasminogen activator inhibitor-1 with insulin resistance in Japan where obesity is rare. Metab. 2003;52(2):226–29.


81. Lindholm L.H., Ibsen H., Dahlof B., et al. LIFE Study Group. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:1004–10.


82. Cnop M., Havel P.J., Utzschneider K.M., et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diab. 2003;46(4):459–69.


83. Weyer C., Funahashi T., Tanaka S., et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.J. Clin. Endocrinol. Metab. 2001;86(5):1930–5.


84. Kadowaki T., Yamauchi T., Kubota N., et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 2006;116(7):1784–92.


85. Gupta J., Mitra N., Kanetsky P.A., et al. CRIC Study Investigators. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 2012;7(12):1938–46.


86. Zhang L., Du J., Hu Z., et al. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J. Am. Soc. Nephrol. 2009;20(3):604–12.


87. Song Y.H., Li Y., Du J., et al. P. Muscle-specific expression of IGF-1 blocks angiotensin IIinduced skeletal muscle wasting. J. Clin. Invest. 2005;115(2):451–58.


88. Thomas S.S., Zhang L., Mitch W.E. Molecular mechanisms of insulin resistance in chronic kidney disease. Kidney Int. 2015;88(6):1233–39.


89. de Vinuesa S.G., Goicoechea M., Kanter J., et al. Insulin resistance, inflammatory biomarkers, and adipokines in patients with chronic kidney disease: effects of angiotensin II blockade. J. Am. Soc. Nephrol. 2006;17(12 Suppl. 3):S206–12.


90. Marshall S., Podlecki D.A., Olefsky J.M. Low pH accelerates dissociation of receptor-bound insulin. Endocrinol. 1983;113(1):37–42.


91. Walker B.G., Phear D.N., Martin F.I., Baird C.W. Inhibition of insulin by acidosis. Lancet. 1963;2(7315):964–65.


92. DeFronzo R.A., Beckles A.D. Glucose intolerance following chronic metabolic acidosis in man. Am. J. Physiol. 1979;236(4):E328–34.


93. Knowler W.C., Barrett-Connor E., Fowler S.E., et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002;346(6):393–403.


94. De Fronzo R.A., Sherwin R., Kraemer N. Effects of physical exercise on insulin action in obesity. Diab. 1996;36:1379–85.


95. Khedr E., El-Sharkawy M., Abdulwahab S., et al. Effect of recombinant human erythropoietin on insulin resistance in hemodialysis patients. Hemodial. Int. 2009;13(3):340–46.


96. van der Aa M.P., Elst M.A., van de Garde E.M., et al. Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial. Nutr. Diab. 2016;6(8):e228.


97. Mc Farlane S., Kumar A., Sowers J.R. Mechanisms by which angiotensin converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am.J. Cardiol. Suppl. 2003;9: H30–7.


98. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet. Diab. Endocrinol. 2015;3(11):866–75.


99. Crowley M.J., Diamantidis C.J., McDuffie J.R., et al. Clinical Outcomes of Metformin Use in Populations With Chronic Kidney Disease, Congestive Heart Failure, or Chronic Liver Disease: A Systematic Review. Ann. Intern. Med. 2017;166(3):191–200.


100. Marso S.P., Daniels G.H., Brown-Frandsen K., et al. LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016;375(4):311–22.


101. amazaki S., Satoh H., Watanabe T. Liraglutide enhances insulin sensitivity by activating AMP-activated protein kinase in male Wistar rats. Endocrinol. 2014;155(9):3288–301.


102. Zinman B., Lachin J.M., Inzucchi S.E. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2016;374(11):1094.


103. Tuzcu A., Bahceci M., Yilmaz E., et al. The comparison of insulin sensitivity in non-diabetic hemodialysis patients treated with and without recombinant human erythropoietin. Horm. Metab. Res. 2004;36(10):716–20.


104. Spaia S., Pangalos M., Askepidis N., et al. Effect of short-term rHuEPO treatment on insulin resistance in haemodialysis patients. Nephron. 2000;84(4):320–25.


105. O’Brien T.P., Jenkins E.C., Estes S.K., et al. Correcting Postprandial Hyperglycemia in Zucker Diabetic Fatty Rats With an SGLT2 Inhibitor Restores Glucose Effectiveness in the Liver and Reduces Insulin Resistance in Skeletal Muscle. Diab. 2017;66(5):1172–84.


106. 1Ferrannini E., Muscelli E., Frascerra S., et al. Metabolic response to sodium- glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 2014;124(2):499–508.


107. Merovci A., Solis-Herrera C., Daniele G., et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Invest. 2014;124(2):509–14.


108. Voytovich M.H., Simonsen C., Jenssen T., et al. Short-term treatment with rosiglitazone improves glucose tolerance, insulin sensitivity and endothelial function in renal transplant recipients. Nephrol. Dial. Transplant. 2005;20(2):413–8.


109. Chan D.T., Watts G.F., Irish A.B., Dogra G.K. Rosiglitazone does not improve vascular function in subjects with chronic kidney disease. Nephrol. Dial. Transplant. 2011;26(11):3543–49.


110. Iwaki M., Matsuda M., Maeda N., et al. Induction of adiponectin, a fat- derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diab. 2003;52(7):1655–63.


111. Miyazaki Y., Mahankali A., Matsuda M., et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2002;87:2784–91.


112. Kernan W.N., Viscoli C.M., Furie K.L., et al. IRIS Trial Investigators. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N. Engl. J. Med. 2016;374(14):1321–31.


113. Young L.H., Viscoli C.M., Curtis J.P., et al. IRIS Investigators. Cardiac Outcomes After Ischemic Stroke or Transient Ischemic Attack: Effects of Pioglitazone in Patients With Insulin Resistance Without Diabetes Mellitus. Circulation. 2017;135(20):1882–93.


114. Scheen A.J. Pharmacokinetics and clinical use of incretin-based therapies in patients with chronic kidney disease and type 2 diabetes. Clin. Pharmacokinet. 2015;54(1):1–21.


115. Young M.A., Wald J.A., Matthews J.E., et al. Effect of renal impairment on the pharmacokinetics, efficacy, and safety of albiglutide. Postgrad. Med. 2014;126(3):35–46.


116. Davidson J.A., Brett J., Falahati A., Scott D. Mild renal impairment and the efficacy and safety of liraglutide. Endocr. Pract. 2011;17(3):345–55.


117. Davies M.J., Bain S.C., Atkin S.L., et al. Efficacy and Safety of LiraglutideVersus Placebo as Add-on to Glucose-Lowering Therapy in Patients With Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial. Diab. Care. 2016;39(2):222–30.


118. Leiter L.A., Carr M.C., Stewart M., et al. Efficacy and safety of the once- weekly GLP-1 receptor agonist albiglutide versus sitagliptin in patients with type 2 diabetes and renal impairment: a randomized phase III study. Diab. Care. 2014;37(10):2723–30.


119. Mak R.H. Metabolic effects of erythropoietin in patients on peritoneal dialysis. Pediatr. Nephrol. 1998;12(8):660–65.


120. Jacobsen L.V., Hindsberger C., Robson R., Zdravkovic M. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. Br. J. Clin. Pharmacol. 2009;68(6):898–905.


121. Imamura S., Hirai K., Hirai A. The glucagon-like peptide-1 receptor agonist, liraglutide, attenuates the progression of overt diabetic nephropathy in type 2 diabetic patients. Tohoku J. Exp. Med. 2013;231(1):57–61.


122. Budde K., Neumayer H.H., Fritsche L., et al. The pharmacokinetics of pioglitazone in patients with impaired renal function. Br. J. Clin. Pharmacol. 2003;55(4):368–74.


123. Fritsche L., Budde K., Glander P., et al. Treating type 2 diabetes in renal insufficiency: the role of pioglitazone. Int. J. Clin. Pharmacol. Ther. 2003;41(10):488–91.


124. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19(2):129–37.


125. Galle J., Kleophas W., Dellanna F., et al. Comparison of the Effects of Pioglitazone versus Placebo when Given in Addition to Standard Insulin Treatment in Patients with Type 2 Diabetes Mellitus Requiring Hemodialysis: Results from the PIOren Study. Nephron. Extra. 2012;2(1):104–14.


126. Rocchini A.P., Marker P., Cervenka T. Time course of insulin resistance associated with feeding dogs a high-fat diet. Am. J. Physiol 1997;272:E147–54.


127. Pandey G., Makhija E., George N., et al: Insulin regulates nitric oxide production in the kidney collecting duct cells. J. Biol. Chem 2015;290:5582–91.


128. Manhiani M.M., Cormican M., Brands M.W. Chronic sodium-retaining action of insulin in diabetic dogs. Am. J. Physiol. Renal. Physiol. 2011;300:F957–65.


129. Bell T.D., DiBona G.F., Biemiller R., Brands M.W: Continuously measured renal blood flow does not increase in diabetes if nitric oxide synthesis is blocked. Am. J. Physiol. Renal. Physiol. 2008;295:F1449–56.


130. Zeng G., Quon M.J. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J. Clin. Invest. 1996;98:894–98.


131. Kocyigit I., Taheri S., Sener E.F., et al. Endothelial nitric oxide synthase gene expression is associated with hypertension in autosomal dominant polycystic kidney disease. Cardiorenal. Med. 2014;4:269–79.


132. Hirode G., Wong R.J. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016. JAMA. 2020;24:2526–28.


133. Kawamoto R., Akase T., Ninomiya D., et al. Metabolic Syndrome is a Predictor of Decreased Renal Function Among Community- Dwelling Middle-Aged and Elderly Japanese. Int. Urol. Nephrol. 2019;12:2285–94.


134. Wu N., Qin Y., Chen S., et al. Association Between Metabolic Syndrome and Incident Chronic Kidney Disease Among Chinese: A Nation-Wide Cohort Study and Updated Meta-Analysis. Diab. Metab. Res. Rev. 2021;7:e3437.


135. Wu M., Shu Y., Wang L., et al. Metabolic Syndrome Severity Score and the Progression of CKD. Eur. J. Clin. Invest. 2022;1:e13646.


136. Ciardullo S., Ballabeni C., Trevisan R., Perseghin G. Metabolic Syndrome, and Not Obesity, Is Associated With Chronic Kidney Disease. Am. J. Nephrol. 2021;8:666–72.


137. Vatier C., Jeru I., Fellahi S., et al. Leptin, Adiponectin, Lipodystrophic and Severe Insulin Resistance Syndromes. Ann. Biol. Clin. (Paris). 2020;3:261–4.


138. da Silva A.A., do Carmo J.M., Li X., et al. Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Can. J. Cardiol. 2020;5:671–82.


139. Esmaili S., Hemmati M., Karamian M. Physiological Role of Adiponectin in Different Tissues: A Review. Arch. Physiol. Biochem. 2020;1:67–73.


140. Martin-Taboada M., Vila-Bedmar R., Medina-Gomez G. From Obesity to Chronic Kidney Disease: How Can Adipose Tissue Affect Renal Function? Nephron. 2021;6:609–13.


141. Miricescu D., Gabriela Balan D., Tulin A., et al. Impact of Adipose Tissue in Chronic Kidney Disease Development (Review). Exp. Ther. Med. 2021;5:539.


142. Rodriguez-Rodriguez A.E., Donate-Correa J., Diaz-Martin L., et al. Obesity and Metabolic Syndrome Induce Hyperfiltration, Glomerulomegaly, and Albuminuria in Obese Ovariectomized Female Mice and Obese Male Mice. Menopause. 2021;211:1296–306.


143. Prakash S., Rai U., Kosuru R., et al. Amelioration of Diet-Induced Metabolic Syndrome and Fatty Liver With Sitagliptin via Regulation of Adipose Tissue Inflammation and Hepatic Adiponectin/AMPK Levels in Mice. Biochim. 2020;168:198–209.


144. Nauck M.A., Quast D.R., Wefers J., Meier J.J. GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes – State-Of-the-Art. Mol. Metab. 2021;46:101102.


145. Cheng L., Fu Q., Zhou L., et al. Dapagliflozin, Metformin, Monotherapy or Both in Patients With Metabolic Syndrome. Sci. Rep. 2021;1:24263.


146. Herat L.Y., Matthews J., Azzam O., et al. Targeting Features of the Metabolic Syndrome Through Sympatholytic Effects of SGLT2 Inhibition. Curr. Hypertens. Rep. 2022;2:67–74.


147. Croci S., D’Apolito L.I., Gasperi V., et al. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients. 2021;5:1389.


148. Fahed G., Aoun L., Bou Zerdan M., et al. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Sci. 2022;2:786.


149. Górriz J.L., Romera I., Cobo A., et al. Glucagon-Like Peptide-1 Receptor Agonist Use in People Living with Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Narrative Review of the Key Evidence with Practical Considerations. Diab. Ther. 2022;13(3):389–421.


150. Gerstein H.C., Colhoun H.M., Dagenais G.R., et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomized placebo-controlled trial. Lancet. 2019;394:121–30.


151. Gerstein H.C., Colhoun H.M., Dagenais G.R., et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the RE.WIND randomised, placebo-controlled trial. Lancet. 2019;394:131–38.


152. Greco E.V., Russo G., Giandalia A., et al. GLP-1 receptor agonists and kidney protection. Med. (Kaunas). 2019;55:233.


153. Husain M., Birkenfeld A.L., Donsmark M., et al. Oral semaglutide andcardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2019;381:841–51.


154. Romera I., Cebrian-Cuenca A., Alvarez-Guisasola F., et al. A Review of practical issues on the use of glucagon-like peptide-1 receptor agonists for the management of type 2 diabetes. Diab. Ther. 2019;10:5–19.


155. Perkovic V., Jardine M.J., Neal B., et al. Canagliflozin and renal Outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019;380:2295–306.


156. Matthews D.R., Li Q., Perkovic V., et al. Effects of canagliflozin on amputation risk in type 2 diabetes: the CANVAS Program. Diab. 2019;62:926–38.


157. Pratley R., Amod A., Hoff S.T., et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double blind, phase 3a trial. Lancet. 2019;394:39–50.


158. 158 Papazafiropoulou A.K., Melidonis A., Antonopoulos S. Effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on cardiorenal and metabolic outcomes in people without diabetes. Curr. Pharm. Des. 2021;27:1035–42.


159. Yaribeygi H., Sathyapalan T., Maleki M., et al. Molecular mechanisms by which sglt2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sci. 2020;240:117090.


160. Wiviott S.D., Raz I., Bonaca M.P., et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019;380:347–57.


161. Nakashima A., Kato K., Ohkido I., Yokoo T. Role and Treatment of Insulin Resistance in Patients with Chronic Kidney Disease: A Review. Nutrients. 2021;13(12):4349.


162. Lee Y.S., Olefsky J. Chronic tissue inflammation and metabolic disease. Gen. Dev. 2021;35:307–28.


163. Adler G.K., Murray G.R., Turcu A.F., et al. Primary Aldosteronism Decreases Insulin Secretion and Increases Insulin Clearance in Humans. Hypertension. 2020;75:1251–59.


164. Dabke K., Hendrick G., Devkota S. The gut microbiome and metabolic syndrome. J. Clin. Investig. 2019;129:4050–57.


165. Wallace H.J., Holmes L., Ennis C.N., et al. Effect of vitamin D3 supplementation on insulin resistance and ß-cell function in prediabetes: A double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2019;110:1138–47.


166. Mancusi C., Izzo R., di Gioia G., et al. Insulin Resistance the Hinge Between Hypertension and Type 2 Diabetes. High Blood Press Cardiovasc. Prev. 2020;27(6):515–26.


Об авторах / Для корреспонденции


Башмаков Юрий Эдуардович – к.м.н., доцент кафедры внутренних болезней академии постдипломного образования ФГБУ «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий» Федерального медико-биологического агентства России Москва. Адрес: 125371, Москва, Волоколамское шоссе, 91; e-mail: iouri.bachmakov@googlemail.com
Федосеев Анатолий Николаевич - д.м.н., профессор кафедры внутренних болезней академии постдипломного образования ФГБУ «Федеральный научно-клинический
центр специализированных видов медицинской помощи и медицинских технологий» Федерального медико-биологического агентства России, Москва. Адрес: 125371, Москва, Волоколамское шоссе, 91; тел.: +7(495)617-10-50; e-mail: info@medprofedu.ru
Денисова Виктория Евгеньевна – врач-нефролог ГБУЗ ГКБ № 24 ДЗМ, Москва. Адрес: 127015, Москва, ул. Писцовая 10; e-mail: gkb24@zdrav.mos.ru


Похожие статьи


Бионика Медиа