Значение нарушений механизмов самозащиты почки при хроническом гломерулонефрите


Н.В. Чеботарева, И.Н. Бобкова, Л.В. Козловская, О.А. Ли

ГОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России, Москва
В обзоре рассмотрены механизмы самозащиты ткани почки (индуцибельные и конституциональные), противостоящие процессам иммунного воспаления и фиброза при хроническом гломерулонефрите. Детально обсужден ряд противовоспалительных факторов, представляющих перспективное направление терапевтического воздействия при прогрессирующих заболеваниях почек.

Литература


1. Kitamura M. TGF-β as an endogenous defender against macrophagetriggered stromelysin gene expression in the glomerulus. J Immunol 1998; 160:5163–5168.
2. Sedor J.R., Nakazato Y., Konieczkowski M. Interleukin-1 and the mesangial cell. Kidney Int 1992;41:595–599.
3. Arend W.P. Interleukin-1 receptor antagonist: A new member of the interleukin-1family. J Clin Invest 1991;88:1445–1451.
4. Tam F.W.K, Smith J., Cashman S.J. et al. Glomerular expression of interleukin receptor antagonist and interleukin-1β genes in antibody-mediated glomerulonephritis. Am J Pathol 1994;145:126–136.
5. Arene W.P., Welgus H.G., Thompson R.C. et al. Biologic properties of recombinant human monocyte-derivated interleukin-1 receptor antagonist. J Clin Invest 1990;85:1694–1697.
6. Luttropp K., Lindholm B., Carrero J.J. et al. Genetics/genomics in chronic kidney disease – towards personalized medicine? Seminars in Dialysis 2009;22(4):417–422.
7. Liu Z., Yang J., Chen Z. et al. Gene polymorphism in IL-1 receptor antagonist affects its production by monocytes in IgA nephropathy and Henoch-Schonlein nephritis. Chin Med J 2001;114(12):1313–1316.
8. Buraczynska M., Ksiazek P., Kubit P. et al. Interleukin-1 receptor antagonist gene polymorphism affects the progression of chronic renal failure. Cytokine 2006;36(3–4):167–172.
9. Hahn W.H., Cho B.S., Kim S.K. et al. Interleukin-1 cluster gene polymorphism in childhood IgA nephropathy. Pediatr Nephrol 2009;24(7): 1329–1336.
10. Rauta V., Teppo A-M., Tornroth T. et al. Lower urinary interleukin-1 receptor antagonist excretion in IgA nephropathy than in Henoch-Schonlein nephritis. Nephrol Dial Transplant 2003;18:1785–1791.
11. Zwiech R., Kacprzyk F., Szuflet A. et al. Prognostic values of serum concentration and urinary excretion of interleukin-1 receptor antagonist and tumor necrosis factor receptors type I and II in patients with IgA nephropathy. Pol Arch Med Wewn 2005;113(4):326–333.
12. Sturfelt G., Roux-Lombard P., Wollheim F.A. et al. Low levels of interleukin-1 receptor antagonist coincide with kidney involvement in systemic lupus erythematosus. British J Rheumatology 1997;36:1283–1289.
13. Chen A., Sheu L.F., Chou W.Y. et al. Interleukin-1 receptor antagonist modulates the progression of a spontaneously occurring IgA nephropaty in mice. Am J Kidney Dis 1997;30(5):693–702.
14. Nikolic-Paterson D.J., Lan H.Y., Hill P.A. et al. Supression of experimental glomerulonephritis by the interleukin-1 receptor antagonist: Inhibition of intercellular adhesion molecule-1 expression. J Am Soc Nephrol 1994; 4:1695–1700.
15. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ Res 2003; 92:827–839.
16. Wojtovicz-Praga S.M., Dickson R.M., Hawkins M.J. et al. Matrix metalloproteinases inhibitors. Invest New Drugs 1997;15:61–75.
17. Marti H.P. Role of matrix metalloproteinases in the progression of renal lesion. Press Med 2000;29:811–817.
18. Бобкова И.Н., Козловская Л.В., Ли О.А. Матриксные металлопротеиназы в патогенезе острых и хронических заболеваний почек // Нефрология и диализ 2008. № 2(10). C. 105–111.
19. Ли О.А., Бобкова И.Н., Козловская Л.В. Клиническое значение определения матриксных металлопротеиназ и их ингибиторов в моче больных хроническим гломерулонефритом // Терапевтический архив 2009. № 8. C. 10–14.
20. Asadullah K., Sterry W., Volk H.D. Interleukin-10 therapy – review of a new approach. Pharmacol Rev 2003;55:241–269.
21. Fouquerbay B., Boutard V., Phillipe C. et al. Mesangial cell-derived interleukin-10 modulates mesangial cell response to lipipolysaccharide. Am J Pathol 1995;147:176–182.
22. Stenvinkel P., Ketteler M., Jonson J.R. et al. IL-10, Il-6 and TNF-α: Central factors in the altered cytokine network of uremia – The good, the bad, and the ugly. Kidney Int 2005;67:1216–1233.
23. Wanidvoranun C, Strober W. Predominant role of tumor necrosis factor-α in human monocyte IL-10 synthesis. J Immunol 1993;151:6853–6861.
24. Chan R.W., Lai F.M., Li E.K. et al. Imbalance of Th1/Th2 transcription factors in patients with lupus nephritis. Rheumatology 2006;45:951–57.
25. Симбирцев А.С. Цитокины – новая система регуляции защитных реакций организма // Цитокины и воспаление 2002. № 1(1). C. 9–16.
26. de Waal Malefyt R., Abrams J. et al. Interleukin-10 inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991;174:1209–1220.
27. Olszina D.P., Pajkrt D., Lauw F.N. et al. Interleukin-10 inhibits the release of CC chemokines during human endotoxemia. J Infect Dis 2000;181:613–20.
28. Kuga S., Otsuka T., Niiro H. et al. Supression of superoxide anion production by interleukin-10 is accompanied by a downregulation of the genes for subunit proteins of NADPH oxidase. Exp Hematol 1996;24:151–57.
29. Fouqueray B., Suberville S., Isaka Y. et al. Reduction of proteinuria in antiglomerular basement membrane nephritis by interleukin-10 (IL-10) gene transfer. J Am Soc Nephrol 1996;7:1698–1701.
30. Tipping P.G., Kitching A.R., Huang X.R. et al. Immune modulation with interleukin-4 and interleukin-10 prevent crescent formation and glomerular injury in experimental glomerulonephritis. Eur J Immunol 1997;27:530–537.
31. Kitching A.R., Katerelos M., Mudge S.J. et al. Interleukin-10 inhibits experimental mesangial proliferative glomerulonephritis. Clin Exp Immunol 2002;128:36–43.
32. Coelho S.N., Saleem S., Konieczny B.T. et al. Immunologic determinants of susceptibility to experimental glomerulonephritis: role of cellular immunity. Kidney Int 1997;51:646–652.
33. Cairns L.S., Phelps R.G., Bowie L. et al. The fine specificity and cytoline profile of T-helper cells responsive to the alfa3 chain of type IV collagen in Goodpasture’s disease. J Am Soc Nephrol 2003;14:2801–2812.
34. Masutani K., Tokumoto M., Nakashima H. Strong polarization toward Th1 immune response in ANCA-associated glomerulonephritis. Clin Nephrol 2003;59:395–405.
35. Tipping P.G., Kitching A.R. Th1 and Th2:what’s new? Clin and Exp Immunol 2005;142:207–215.
36. Romagnani S. Biology of human Th1 and Th2 cells. J Clin Immunol 1995;15:121–129.
37. Wang Y.P., Kairaitis L., Tay Y.C. et al. Reconstitution of CD4+ T cells protects renal injury in SCID mice with adriamycin nephropathy (abstract). J Am Soc Nephrol 2001;12:644.
38. Pandiyan P., Zheng L., Ishihara S. et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007;8:1353–1362.
39. Scheffold A., Murphy K.M., Hofer T. Competition for cytokines: T(reg) cells take all. Nat Immunol 007;8:1285–1287.
40. Taams L.S., van Amelsfort J.M., Tiemessen M.M. et al. Modulation of monocyte/macrophage function by human CD4+/CD25+ regulatory T cells. Hum Immunol 2005;66:222–230.
41. Martinez F.O., Sica A., Mantovani A., et al. Macrophage activation and polarization. Front Biosci 2008;13:453–461.
42. Wang Y., Wang Y.P., Zheng G. et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007;72:290–299.
43. Mosser D.M. The many faces of macrophage activation. J Leukoc Biol 2003;73:209–212.
44. Wilson H.M., Walbaum D., Rees A.J. Macrophages and the kidney. Curr Opin Nephrol Hypertens 2004;13:285–290.
45. Papayianni A., Serhan C.N., Philips M.L. et al. Transcellular biosynthesis of lipoxin A4 during adhesion of platelets and neutrophils in experimental immune complex glomerulonephritis. Kidney Int 1995;47:1295–1302.
46. Claria J., Serhan C.N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interaction. Proc Natl Acad Sci USA 1995;92:9475.
47. Conrad D.J., Kuhn H, Mulkins M. et al. Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci USA 1992;89:217–221.
48. Brinckmann R., Topp M.S., Zalan I. et al. Regulation of 15-lipoxygenase expression in lung epithelial cells by interleukin-4. Biochem J 1996; 318:305–312.
49. McMahon B., Mitchell S., Brady H.R. et al. Lipoxins: Revelation on resolution. Trends Pharmacol Sci 2001;8:391–395.
50. Colgan S.P., Serhan C.N., Parcos C.A. et al. LipoxinA4 modulates transmigration of human neutrophils across intestinal epithelial monolaeyrs. J Clin Invest 1993;92:75–82.
51. Ohse T., Ota T., Kieran N. et al. Modulation of interferon-induced genes by lipoxin analogue in anti-glomerular basement membrane nephritis. J Am Soc Nephrol 2004;15:919–927.
52. Godson C., Mitchell S., Harvey K. et al. Cutting edge: Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocytederived macrophages. J Immunol 2000;164:1663–1667.
53. McMahon B., Mitchell D., Shattock R. et al. Lipoxin, leukotriene and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J 2002;16:1817–1819.
54. Fierro I.M., Kutok J.L., Serhan C.N. Novel lipid mediator regulators of endothelial cell proliferation and migration: Aspirin-triggered-15R-lipoxin A4 and lipoxin A4. J Pharmacol Exp Ther 2002;300:385–392.
55. Katoh T., Takahashi K., DeBoer D.K. et al. Renal hemodynamic actions of lipoxins in rats: A comparative physiological study. Am J Physiol 1992; 263:436–442.
56. Wu S.-H., Liao P.-Y., Yin P.-L. et al. Elevated expression of 15-lipoxigenase and lipoxin A4 in children with acyte poststreptococcal glomerulonephritis. AnJ Pathol 2009;174:115–122.
57. Boutet P., Bureau F., Dengand G. et al. Inbalance between lipoxin A4 and leukotriene B4 in chronic mastitis-affected cows. J Dairy Sci 2003; 86:3430–3439.
58. Wu S.-H., Liao P.-Y., Yin P.-L. et al. Inverse temporal changes of lipoxin A4 and leukitrienes in children with Henoch-Schonlein purpura. Prostaglandins, Leukotrienes and essential fatty acids 2009;80(4):177–183.
59. Beck F.-X., Neuhofer W., Muller E. Molecular chaperones in the kidney: distribution, putative roles and regulation. An J Phy siol Renal Physiol 2000;279:203–215.
60. Aufricht C., Lu E., Thulin G. et al. ATP releases HSP72 from protein aggregates after renal ischemia. Am J Physiol Renal Physiol 1998;274:268–274.
61. Cowley B.D., Gudapaty S. Temporal alterations in regional gene expression after nephrotoxic renal injury. J Lab Clin Med 1995;125:187–199.
62. Harrison E.M., Sharpe E., Bellamy C.O. et al. Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemiareperfusion injury. Am J Physiol Renal Physiol 2008;295:397–405.
63. Venkataseshan V.S., Marquet E. Heat shock protein 72/73 in normal and diseased kidneys. Nephron 1996;73:442–449.
64. Mehlen P., Hickey E., Weber L.A. et al. Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generated a protection against TNFα in NIH-3T3-ras cells. Biochem Biophys Res Commun 1997;241:187–192.
65. Smoyer W.E., Gupta A., Mundel P. et al. Altered expression of glomerular heat shock protein 27 in experimental nephrotic syndrome. J Clin Invest 1996;97:2697–2704.
66. Welch W.J. Mammalian stress response: Cell physiology, structure/function of stress proteins, and implication for medicine and disease. Physiol Rev 1992;72:1063–1081.
67. Multhoff G., Hightower L.E. Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1996;1:167–176.
68. Kaufmann S.H. Heat shock protein and the immune response. Immunol Todey 1990;11:129–136.
69. Lydyard P.M., van Eden W. Heat shock proteis: immunity and immunipathology. Immunol Todey 1990;11:228–229.
70. Jorgensen C., Gedon E., Jaquet C. et al. Gastric administration of recombinant 65kDa heat shock protein delays the severi of type II collagen induced arthritis in mice. J Rheumatol 1998;25:763–767.
71. Trieb К., Blahovec H., Margreiter R. et al. Heat shock protein expression in the transplanted human kidney. Transplant International 2005;14(5):281–286.
72. Мухин Н.А., Ляшко В.Н., Маргулис Б.А. и др. Амилоидоз и антитела к белкам теплового шока // Терапевтический архив 1992. № 64(5). C. 79–82
73. van Eden W., Tholet J.E.R., van der Zee R. et al. Cloning of the mycobacterial epitope recognized by T lymphocyte in adjuvant arthritis. Nature 1988;331:171–173.
74. Anderton S.M., van der Zee R., Prakken B. et al. Activation of T cells recognizing self 60-kDa heat shock protein can protect against experimental arthritis. J Exp Med 1995;181:943–952.
75. Paul A.G.A., van Kooten P.J.S., van Eden W. et al. Highly autoproliferative T cells specific for 60-kDa heat shock protein produce IL-4/IL-10 and IFN-γ and are protective in adjuvant arthritis. J Immunol 2000;165:7270–7277.
76. Birnbaum G., Kotilinek L., Miller S.D. et al. Heat shock protein s and experimental autoimmune encephalomyelitis. II: environmental infection and extra-neuraxaial inflammation after the course of chronic relapsing encephalomyelitis. J Neuroimmunol 1998;90:149–161.
77. Dodd S.M., Martin J.E., Swash M. et al. Expression of heat shock protein epitopes in renal disease. Clinical Nephrology 1993;39(5):239–244.


Об авторах / Для корреспонденции


Чеботарева Н.В. – отдел нефрологии НИИ уронефрологии и репродуктивного здоровья человека ГОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России. E-mail: natasha_tcheb@mail.ru;
Бобкова И.Н. – д.м.н., заведующая отделом нефрологии НИИ уронефрологии и репродуктивного здоровья человека ГОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России;
Козловская Л.В. – д.м.н., профессор кафедры терапии и профболезней медико-профилактического факультета ГОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России;
Ли О.А. – научный сотрудник отдела нефрологии НИИ уронефрологии и репродуктивного здоровья человека ГОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России


Похожие статьи


Бионика Медиа