Защитное действие белков теплового шока при заболеваниях почек


И.Н. Бобкова, Н.В. Чеботарева, Л.В. Козловская, Н.В. Непринцева

ГОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития РФ, Москва
В обзоре обсуждаются механизмы самозащиты почки, противостоящие процессам иммунного воспаления и фиброза. Подробно рассмотрено одно из звеньев этой системы – белки теплового шока (БТШ). Aнализируются нарушения функционирования БТШ при различных заболеваниях почек, в т. ч. при хроническом гломерулонефрите (ХГН), обсуждаются перспективные направления коррекции этих нарушений.

Литература


1. Kitamura N., Fine L.G. The concept of glomerular self-dense. Kidney Int. 1999; 55:1639–1671.
2. Kitamura M. TGF-β as an endogenous defender against macrophagetriggered stromelysin gene expression in the glomerulus. J Immunol.1998; 160: 5163–5168.
3. Suto T.S., Fine L.G., Shimuzu F., Kitamura M. In vivo transfer of engineered macrophages into the glomerulus: endogenous TGF-β-mediated defense against macrophage-induced glomerular cell activation. J. Immunol. 1997; 159:247–2483.
4. Van Why S.K., Siegel N.J. Heat shock proteins in renal injury and recovery. Curr. Opin. Nephrol. Hypertens. 1998; 7: 407–412.
5. Li G.C. Heat shock proteins: role in thermotolerance, drug resistance and relationship to DNA Topoisomerases. Nat Cancer Inst Monogr 1984;(4):99–103.
6. Ивашкин В.Т., Драпкина О.М. Клиническое значение оксида азота и белков теплового шока. Москва: ГЕОТАР-Медиа; 2011 г.
7. Маргулис Б.А. Защитная функция белков теплового шока семейства 70 кД. СПб: диссертация на соискание ученой степени д.б.н.; 2000 г. 8. Hightower L.E. Heat shock, stress protein, chaperones and proteotoxicity. Cell. 1991; 66: 191–197.
9. Панасенко О.О., Ким М.В., Гусев Н.Б. Структура и свойства малых белков теплового шока. Успехи биологической химии. 2003; 43: 59–98. 10. Lindquist S., Craig E.A. The heat-shock proteins. Ann. Rev. Genet. 1998; 22: 631–677.
11. Welch W.J. Mammalian stress response: Cell physiology, structure/function of stress proteins, and implication for medicine and disease. Physiol. Rev.
1992;72:1063–1081.
12. Basu S., Binder R., Suto R. et al. Necrotic, but not apoptotic cell death releases heat shock proteins, with deliver a partial maturation signal to dendritic cells and activate the NFkB pathway. Int Immunol. 2000; 12:1539–1546.
13. Kaufmann S.H. Heat shock protein and the immune response. Immunol. Today. 1990; 11: 129–136.
14. Lydyard P.M., van Eden W. Heat shock proteins: immunity and immunopathology. Immunol. Today. 1990; 11: 228–229.
15. Birnbaum G., Kotilinek L., Miller S.D. et al. Heat shock proteins and experimental autoimmune encephalomyelitis II: environmental infection and extra-neuraxial inflammation after the course of chronic relapsing encephalomyelitis. J. Neuroimmunol. 1998; 90: 149–161.
16. Georgopoulos C., McFarland H. Heat shock protein in multiple sclerosis and other autoimmune diseases. Immunol. Todаy. 1993; 14(8): 373–375.
17. Нillon V., Latchman D., Isenberg D. Rewiev: heat shock proteins and systemic lupus erythematosus. Lupus. 1991; 1:3–8.
18. Jorgensen C., Gedon E., Jaquet C. et al. Gastric administration of recombinant 65kDa heat shock protein delays the severe of type II collagen induced arthritis in mice. J. Rheumatol. 1998; 25: 763–767.
19. Lang A., Benke D., Eitner F. et al. Heat shock protein 60 is released in immune-mediated glomerulonephritis and aggravates disease: in vivo evidence for an immunologic danger signal. J. An. Soc. Nephrol. 2005;16:383–391.
20. Trieb К., Blahovec H., Margreiter R. et al. Heat shock protein expression in the transplanted human kidney. Transplant International. 2005; 14(5): 281–286.
21. Мухин Н.А., Ляшко В.Н., Маргулис Б.А. и соавт. Амилоидоз и антитела к белкам теплового шока. Тер. архив. 1992; 64: 79–82.
22. Van Eden W., Tholet J.E.R., van der Zee R. et al. Cloning of the mycobacterial epitope recognized by T lymphocyte in adjuvant arthritis. Nature. 1988; 331:171–173.
23. Anderton S.M., van der Zee R., Prakken B. et al. Activation of T cells recognizing self 60-kDa heat shock protein can protect against experimental arthritis. J. Exp. Med. 1995; 181: 943–952.
24. Zanin-Zhorov A., Bruck R., Tal G. et al. Heat shock protein 60 inhibits Th1- mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines. J Immunol. 2005; 174: 3227–3236.
25. Zanin-Zhorov A., Cahalon L., Tal G. et al. Heat shock protein 60 enhanced CD4+CD25+regulatory T cell function via innate TLR2 signaling. J. Clin. Invest. 2006; 116: 2022–2032.
26. Vabulas R.M., Ahmad-Nejad P., da Costa C. et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/ interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 2001; 276(33): 31332–31339.
27. Detanico T., Rodrigues L., Sabritto A.C. et al. Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin Exp Immunol. 2004; 135: 336–342.
28. Caldas C., Luna E., Spadafora-Ferreira M. et al. Cellular autoreactivity against heat shock protein 60 in renal transplant patients: peripheral and graftinfiltrating responses. Clin. Exp. Immunol. 2006; 146: 66–75.
29. Dodd S.M., Martin J.E., Swash M. et al. Expression of heat shock protein epitopes in renal disease. Clinical Nephrology. 1993; 39(5): 239–244.
30. Venkataseshan V.S., Marquet E. Heat shock protein 72/73 in normal and diseased kidneys. Nephron. 1996; 73:442–449.
31. Marzec L., Zdrojewski Z., Liberek T. et al. Expression of Hsp 72 protein in chronic kidney disease patients. Scandinavian J. Urol. Nephrol. 2009; 43(5):400–408.
32. Samali A., Cotter T.G. Heat shock proteins increase resistance to apoptosis. Exp. Cell. Res. 1996; 223: 163–170.
33. McMillan D.R., Xiao X., Shao L. et al. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heatinduced apoptosis. J. Biol. Chem. 1998;(273):7523–7528.
34. Beck F-X., Neuhofer W., Muller E. Molecular chaperones in the kidney: distribution, putative roles and regulation. Am. J. Physiol, Renal. Physiol. 2000; 279: 203–215.
35. Farman N., Oblin M.E., Lombes M. et al. Immunolocalisation of gluco-and mineralocorticoid receptors in rabbit kidney. Am. J. Physiol. Cell. Physiol. 1991; 260: 226–233.
36. Ramirez V., Mejia-Vilet J.M., Hernandez D. et al. Radicolol, a heat shock inhibitor, reduces glomerular filtration rate. Am. J. Physiol. Renal. Physiol. 2008; 295: 1044–1051.
37. Morita K., Wakui H., Komatsuda A. et al. Induction of heat-shock proteins HSP73 and HSP90 in rat kidneys after ischemia. Ren. Fail. 1995; 17: 405–419.
38. Ohtani H., Wakui H., Komatsuda A. et al. Induction and intracellular localization of 90-kDa heat-shock protein in rat kidneys with acute gentamycin nephropathy. Lab. Invest. 1995; 72: 161–165.
39. Komatsuda A., Wakui H., Imai H. et al. Renal localization of the constitutive 73-kDa heat-shock protein in normal and PAN rats. Kidney Int. 1992; 41:1204–1212.
40. Dinda A.K., Mathur M., Guleria S. et al. Heat shock protein (HSP) expression and proliferation of tubular cells in end stage renal disease with and without haemodialysis. Nephrol. Dial. Transplant. 1998;13: 99–105.
41. Komatsuda A., Wakui H., Imai H. et al. Expression of 90-kDa heat-shock protein within cellular crescents in human diseased kidneys. Nephrology. 2007; 2(2): 87–91.
42. Yokoo T., Kitamura M. IL-1β depressed expression of the 70-kilodalton heat shock protein and sensitizes glomerular cells to oxidant-initiated apoptosis. J. Immunol. 1997;272: 18033–18037.
43. Schober A., Muller E., Thurau K. et al. The response of heat shock proteins 25 and 72 to ischemia in different kidney zones. Pfluger Arch. 1997; 434: 292–299.
44. Mueller T., Bidmon B., Pichler P. et al. Urinary heat shock protein-72 excretion in clinical and experimental renal ischemia. Pediatr Nephrol. 2003; 18: 97–99.
45. Tsagalis G.C., Nikolopoulou N., Sotsiou F. et al. The Expression of heat shock proteins 27 and 70 in lupus nephritis. Hospital Chronicles. 2006; 1(3):125–129.
46. Muller E., Neuhofer W., Ohno A. et al. Heat shock proteins HSP25, HSP 60, HSP 72, HSP73 in isoosmotic cortex and hyperosmotic medulla of rat kidney. Pflugers Arch. 1996: 431: 608–617.
47. Hernandez-Pando R., Pedrazs-Chaverri J., Orozco-Estevez H. et al. Histological and subcellular distribution of 65 and 70 kD heat shock proteins in experimental nephrotoxic injury. Exp. Toxic. Pathol. 1995; 47: 501–508.
48. Lavoie J.N., Hickey E., Weber L.A. et al. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem. 1993;268: 24210–24214.
49. Preville X., Schultz H., Knauf U. et al. Analysis of the role of Hsp25 phosphorylation reveals the importance of the oligomerization state of this small heat shock protein in its protective function against TNF-α and hydrogen peroxide-induced cell death. J. Cell. Biochem. 1998; 69: 436–452.
50. Neuhofer W., Muller E., Burger-Kentischer A. et al. Pretreatment with hypertonic NaCl protects MDCK cells against high urea concentration. Pflugers Arch. 1998; 435:407–414.
51. Schober A., Burger-Kentischer A., Muller E. et al. Effect of ischemia on localization of heat shock proteins in kidney. Kidney Int. 1998; 54(Suppl. 67): 174–176.
52. Smoyer W.E., Ranson R.F. Hsp27 regulates podocyte cytoskeleton changes in an in vitro model of podocyte process retraction. FASEB J. 2002; 16:316–326.
53. Gupta W.E., Mundel P.A., Ballew J.D. et al. Altered expression of glomerular heat shock protein 27 in experimental nephrotic syndrome. J. Clin. Invest. 1996; 97: 2697–2704.
54. Maines M.D. The heme oxygenase system: A regulator of second messenger gases. Ann. Rev. Pharmacol. Toxicol. 1997; 37: 517–554.
55. Toru T., Kiyoshi M., Reiko A. et al. Defense against oxidative tissue injury: the essential role played by hem oxygenase-1. Current Enzyme Inhibition. 2006; 2(2):105–124.
56. Nakao A., Moore B.A., Murase N. et al. Immunomodulatory effects of inhaled carbon monoxide on rat syngenic small bowel graft motility. Gut. 2003;52:1278–1285.
57. Ohta K., Yachie A., Fujimoto R. et al. Tubular injury as a cardinal pathologic feature in human hem oxygenase-1 deficiency. Am. J. Kidney Disease. 2000; 35: 863–870.
58. Takeda Y., Takeno M., Iwasaki M. et al. Chemical induction of HO-1 suppresses lupus nephritis by reducing local iNOS expression and synthesis of anti-dsDNA antibody. Clin. Exp. Immunol. 2004;138:237–244.
59. Mosley K., Wembridge D.E., Catell V. et al. Heme oxygenase is induced in nephrotoxic nephritis and hemin, a stimulator of heme oxygenase synthesis, ameliorates disease. Kidney Int. 1998; 53:672–678.
60. Shimizu H., Takahashi T., Suzuki T. et al. Protective effect of hem oxygenase induction in ischemic acute renal failure. Crit. Care Med. 2000; 28: 809–817.
61. Лексина К.C. Влияние ингибиторов ангиотензинпревращающего фер мента на эндотелиальную функцию, оксидантную и антиоксидантную системы у больных инфарктом миокарда. Дисс. канд. мед. наук. М., 2009.
62. Маргулис Б.А., Гужова И.В. Белки стресса в эукариотической клетке. Цитология. 2000; 42: 323–342.
63. Задоржная О.О. Стресс-белки при инфаркте миокарда. Дисс. канд. мед.
наук. М., 2000.
64. Suzuki K., Sawa Y., Kaneda Y. et al. In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J. Clin. Invest. 1997; 99: 1645–1650.
65. Quintana F.J., Carmi P., Mor F. et al. Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: Immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum. 2004; 50 (11): 3712–3720.
66. Quintana F.J., Cohen I.R. DNA vaccines coding for heat-shock proteins (HSPs): tools for the activation of HSP-specific regulatory T cells. Expert Opin. Biol. Ther. 2005; 5(4): 1–10.
67. Pockley A.G. Heat shock proteins as regulators of the immune response. Lancet. 2003; 362: 469–476.
68. Prakken B.J., Samodal R., Le T.D. et al. Epitope-specific immunotherapy induced immune deviation of proinflammatory T cell in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA.2004; 101: 4228–4233.
69. Vischer T.L. Follow-up with OM-8980 after a double-blind study of OM-8980 and auranofin in rheumatoid arthritis. Clin. Rheumatol. 1990; 9: 356–361.
70. Raz I., Elias D., Avron A. et al. β-Cell function in new-onset type 1 diabetes and immunomodulation with a heat shock protein peptide (DiaPep 277): a randomized, double-blind, phase II trial. Lancet. 2001; 358: 1749–1753.


Об авторах / Для корреспонденции


Бобкова И.Н. – заведующая отделом нефрологии НИИ Уронефрологии и репродуктивного здоровья человека ГБОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России, д.м.н.
E-mail: irbo.mma@mail.ru;
Чеботарева Н.В. – отдел нефрологии НИИ уронефрологии и репродуктивного здоровья человека ГБОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России, старший научный сотрудник, к.м.н.;
Козловская Л.В. – профессор кафедры терапии и профболезней ГБОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России, д.м.н.;
Непринцева Н.В. – аспирант кафедры нефрологии и гемодиализа ФППОВ ГБОУ ВПО “Первый МГМУ им. И.М. Сеченова” Минздравсоцразвития России


Похожие статьи


Бионика Медиа