Использование современных МИС с элементами искусственного интеллекта в нефрологии и прецизионной заместительной почечной терапии


DOI: https://dx.doi.org/10.18565/nephrology.2023.4.44-52

Большаков С.А., Шутов Е.В., Долидзе Д.Д., Сороколетов С.М.

1) ГБУЗ ГКБ им. С.П. Боткина ДЗМ, Москва, Россия; 2) Российская медицинская академия непрерывного профессионального образования, Москва, Россия
Хроническая болезнь почек (ХБП) является серьезной, стремительно растущей проблемой мирового здравоохранения. Этиологическая разнородность ХБП, непрерывно увеличивающиеся в объеме массивы данных пациентов, необходимость одновременного мониторинга целого ряда жизненно важных показателей, ежегодно повышающиеся требования к качеству оказания медицинской помощи – неполный список того, что делает необходимым внедрение современных медицинских информационных систем (МИС), в том числе с элементами искусственного интеллекта/систем помощи принятия врачебных решений (ИИ/СППВР)
в практику врача нефролога. В нашем обзоре мы попытались описать современные достижения в цифровизации нефрологической помощи в мире с использованием МИС с ИИ для решения самых разнообразных задач.

Литература


1. An estimated 1 in 10 people worldwide have chronic kidney disease, Kidney Care UK


2. Bharati J., Jha V. Global Kidney Health Atlas: a spotlight on the Asia-Pacific sector. Kidney Res Clin Pract. 2022;41(1);22–30.


3. Bello A.K., McIsaac M., Okpechi I. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in North America and the Caribbean. Kidney Int. Suppl., 2021;11(2):e66–e76.


4. Zhang L., Wang J., Yang C. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization and services for the management of kidney failure in North and East Asia. Kidney Int. Suppl., 2021;11(2): e77–e85.


5. Divyaveer S.S., Ramachandran R., Sahay M. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in South Asia. Kidney Int. Suppl., 2021;11(2):e97–e105.


6. Kelly D.M., Anders H., Bello A. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in Western Europe. Kidney Int. Suppl., 2021;11(2):e106–e118.


7. Amouzegar A., Abu-Alfa A., Alrukhaimi M. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in the Middle East. Kidney Int. Suppl., 2021;11(2): e47–e56.


8. Wainstein M., Bello A., Jha V. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in Latin America. Kidney Int. Suppl., 2021;11(2):e35–e46.


9. Oguejiofor F., Kiggundu D., Bello A. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in Africa. Kidney Int. Suppl., 2021;11(2): e11–e23.


10. Dębska-Ślizień A., Bello A., Johnson D. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in Eastern and Central Europe. Kidney Int. Suppl., 2021;11(2):e24–e34.


11. Bello A., Alrukhaimi M., Ashuntantang G. et al. Global overview of health systems oversight and financing for kidney care. Kidney Int. Suppl., 20188(2):41–51.


12. Yeung E., Bello A., Levin A. et al. Current status of health systems financing and oversight for end-stage kidney disease care: a cross-sectional global survey. BMJ Open., 2021;11(7).


13. Zakharova E., Gaipov A., Bello A. et al. International Society of Nephrology Global Kidney Health Atlas: structures, organization, and services for the management of kidney failure in Newly Independent States and Russia. Kidney Int. Suppl., 2021;11(2):e57–e65.


14. Kobalava Z., Villevalde S., Borovkova N. et al. Prevalence of markers of chronic kidney disease in patients with arterial hypertension: Results of epidemiological study chronograf. Kardiologiya. 2017;57(10):39–44.


15. Маслова О.В., Сунцов Ю.И., Шестакова М.В. и др. Распространенность диабетической нефропатии и хронической болезни почек при сахарном диабете в Российской Федерации. Клиническая нефрология. 2010;3:45-50.


16. Ощепкова Е.В., Долгушева Ю.А., Жернакова Ю.В. и др. Распрост- раненность нарушения функции почек при артериальной гипертонии (по данным эпидемиологического исследования ЭССЕ-РФ). Системные гипер- тензии. 2015; 12 (3): 19-24.


17. Chebotareva N., Guliaev S., Androsova T. et al. Сhronic kidney disease in rheumatoid arthritis patients: Prevalence, risks factors, histopathological variants. Ter. Arkh. Consilium Medikum. 2019;91(5):129–133.


18. Liyanage T., Ninomiya T., Jha V. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975–1982.


19. Himmelfarb J., Vanholder R., Mehrotra R. et al. The current and future landscape of dialysis. Nat. Rev. Nephrol. 2020;16(10):573.


20. Shilov S., Shilova S., Rumyantseva R. et al. The state of the nephrological service in the Russian Federation: renal replacement therapy in the period from 2017 to 2021. Nephrology. 2022;1: 6–15.


21. Milchakov K.S., Gabaev M.I., Shilov E.M. Preventive care for patients with chronic kidney disease in the Russian Federation: an analytical review of the prevalence and existing programs. Saratov Journal of Medical Science. 2019;15(1):24–28. Russian (Мильчаков К.С., Габаев М.И., Шилов Е.М. Профилактическая помощь больным хронической болезнью почек в Российской Федерации: аналитиче- ский обзор распространенности и существующих программ. Саратовский научно-медицинский журнал. 2019;15(1):24–28).


22. Zoccali C., Moissl U., Chazot C. et al. Chronic Fluid Overload and Mortality in ESRD. J. Am. Soc. Nephrol. 2017;28(8):2491–2497.


23. Assimon M.M., Wenger J., Wang L. et al. Ultrafiltration Rate and Mortality in Maintenance Hemodialysis Patients. Am. J. Kidney Dis. 2016; 68(6):911–922.


24. Hecking M., Moissl U., Genser B. et al. Greater fluid overload and lower interdialytic weight gain are independently associated with mortality in a large international hemodialysis population. Nephrol. Dial. Transplant. 2018;33(10):1832–1842.


25. Assimon M.M., Wang L., Flythe J.E. Failed Target Weight Achievement Associates with Short-Term Hospital Encounters among Individuals Receiving Maintenance Hemodialysis. J. Am. Soc. Nephrol. 2018;29(8):2178–2188.


26. Flythe J.E., Xue H., Lynch K. et al. Association of mortality risk with various definitions of intradialytic hypotension. J. Am. Soc. Nephrol. 2015;26(3):724–734.


27. Agarwal R., Nissenson A., Batlle D. et al. Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. Am. J. Med. Elsevier Inc., 2003;115(4):291–297.


28. Bakris G.L., Burkart J., Weinhandl E. et al. Intensive Hemodialysis, Blood Pressure, and Antihypertensive Medication Use. Am. J. Kidney Dis. 2016;68(5S1):S15–S23.


29. Yang Y.L., Chen S., Wu C. et al. Optimal blood pressure for patients with end-stage renal disease following coronary interventions. J. Clin. Hypertens. (Greenwich). 2021;23(8):1622–1630.


30. Georgianos P.I., Agarwal R. Blood Pressure and Mortality in Long-Term Hemodialysis-Time to Move Forward. Am. J. Hypertens. 2017;30(3):211–222.


31. Iseki K. Control of hypertension and survival in haemodialysis patients. Nephrology (Carlton). 2015;20(2):49–54.


32. Maruyama T., Takashima H., Abe M. Blood pressure targets and pharmacotherapy for hypertensive patients on hemodialysis. Expert Opin. Pharmacother. 2020;21(10):1219–1240.


33. Davenport A. Blood pressure targets for hemodialysis patients: Aspirational or practical? Hemodial. Int. 2016;20 Suppl 1:S25–S29.


34. Hopkins K., Bakris G.L. Hypertension goals in advanced-stage kidney disease. Clin. J. Am. Soc. Nephrol. 2009;4 Suppl 1. № Suppl. 1.


35. Alberta Kidney Disease Network. Cumming School of Medicine. University of Calgary


36. Manitoba Renal Program.


37. Canadian Organ Replacement Register (CORR). CIHI


38. Lassalle M., Ayav C., Frimat L. et al. The essential of 2012 results from the French renal epidemiology and information network (REIN) ESRD registry. Nephrol. Ther. Elsevier Masson s.r.l. 2015;11(2):78–87.


39. The renal epidemiology and information network (REIN): a new registry for end-stage renal disease in France


40. UK Renal Registry. The UK Kidney Association


41. National cohort study on chronical kidney disease › German Chronic Kidney Disease (GCKD)


42. Prieto-Velasco M., del Pino y Pino M., Buades Fuster J. et al. Advanced Chronic Kidney Disease Units in Spain: a national survey on standards of structure, resources, results and patient safety. Nefrologia. 2020;40(6):608–622.


43. Calleros-Basilio L., Cortes M., Garcia-Jerex A. et al. Quality Assurance of Samples and Processes in the Spanish Renal Research Network (REDinREN) Biobank. Biopreserv. Biobank. 2016;14(6):499–510.


44. Lorent M., Foucher Y., Kerleau K. et al. The EKiTE network (epidemiology in kidney transplantation - A European validated database): An initiative epidemiological and translational European collaborative research. BMC Nephrology. 2019;20(1):1–10.


45. The European Reference Centres for rare kidney diseases: ERKNet


46. United States Renal Data System - USRDS - NIDDK


47. ERA Registry. ERA


48. Kidney disease Association of Thailand – The Nephrology Society of Thailand


49. ANZDATA - Australia and New Zealand Dialysis and Transplant Registry - ANZDATA


50. Cusumano A.M., Rosa-Diez G.J., Gonzalez-Bedat M.C. Latin American Dialysis and Transplant Registry: Experience and contributions to end-stage renal disease epidemiology World J. Nephrol. 2016;5(5):389.


51. India Dialysis Registry


52. About NRR – NRR – National Renal Registry


53. The South African Renal Registry


54. Yang C., Gao B., Zhao X. et al. Executive summary for China Kidney Disease Network (CK-NET) 2016 Annual Data Report. Kidney Int. 2020;98(6):1419–23.


55. Андрусев А.М., Перегудова Н.Г., Шинкарев М.Б. Заместительная почечная терапия хронической болезни почек 5 стадии в Российской Федерации 2016- 2020 гг. Отчет по данным Общероссийского Регистра заместительной почечной терапии РДО. Нефрология и диализ. 2021; 23(3):255-329.


56. О порядке ведения Федерального регистра лиц, страдающих жизнеугрожаю- щими и хроническими прогрессирующими редкими (орфанными) заболевания- ми, приводящими к сокращению продолжительности жизни граждан или их инвалидности, и его регионального сегмента от 26 апреля 2012 г.


57. Проект федерального закона “О донорстве органов человека и их трансплан- тации”


58. КФ - электронный клинический фармаколог, проверка лекарств


59. Galenos.Clinic - Компания ТехЛаб


60. MeDiCase симптом-чекер


61. Третье Мнение - сервисы искусственного интеллекта для здравоохранения


62. О компании BOTKIN AI


63. Цельс – Медицинские скрининг системы. CELSUS


64. Care Mentor AI


65. Официальный сайт единого реестра российских программ для электронных вычислительных машин и баз данных


66. Abdel-Kader K., Jhamb M. EHR-Based Clinical Trials: The Next Generation of Evidence. Clin. J. Am. Soc. Nephrol. 2020;15(7):1050.


67. Jhamb M., Weltman M., Yabes J. et al. Electronic health record based population health management to optimize care in CKD: Design of the Kidney Coordinated HeAlth Management Partnership (K-CHAMP) trial. Contemp. Clin. Trials. 2023;131:107269.


68. Sultan A., James G., Wang X. et al. Incidence of Uncommon Clinical Events in USA Patients with Dialysis-Dependent and Nondialysis-Dependent Chronic Kidney Disease: Analysis of Electronic Health Records from TriNetX. Nephron. 2021;145(5):462–473.


69. Jhamb M., Cavanaugh K., Bian A. et al. Disparities in electronic health record patient portal use in nephrology clinics. Clin. J. Am. Soc. Nephrol. 2015;10(11):2013–2022.


70. Palabindala V., Pamarthy A., Jonnalagadda N.R. Adoption of electronic health records and barriers. J. community Hosp. Intern. Med. Perspect. 2016; 6(5):32643.


71. Segarra A., Del Caprio J., Marco M. et al. Integrating electronic health data records to develop and validate a predictive model of hospital-acquired acute kidney injury in non-critically ill patients. Clin. Kidney J. 2021;14(12): 2524–2533.


72. Anderson N., Kyte D., McMullan C. et al. Global use of electronic patient- reported outcome systems in nephrology: a mixed methods study. BMJ Open. 2023;13(7):e070927.


73. Joyce E., DeAlmeida D., Fuhrman D. et al. eResearch in acute kidney injury: a primer for electronic health record research. Nephrol. Dial. Transplant. 2019;34(3):401–407.


74. Lonnemann G., Duttlinger J., Hohmann D. et al. Timely Referral to Outpatient Nephrology Care Slows Progression and Reduces Treatment Costs of Chronic Kidney Diseases. Kidney Int. Reports. 2017;2(2):142–151.


75. Chan M., Dall A., Fletche K. et al. Outcomes in Patients with Chronic Kidney Disease Referred Late to Nephrologists: A Meta-analysis. Am. J. Med. 2007;120(12):1063- 1070.e2.


76. Nadkarni G., Gottesman O., Linneman J. et al. Development and validation of an electronic phenotyping algorithm for chronic kidney disease. AMIA Annu. Symp. Proc. 2014;2014:907.


77. Norton J., Ali K., Jurkovitz C. et al. Development and validation of a pragmatic electronic phenotype for CKD. Clin. J. Am. Soc. Nephrol. 2019;14(9):1306–1314.


78. Mansour O., Paik J., Wyss R. et al. A Novel Chronic Kidney Disease Phenotyping Algorithm Using Combined Electronic Health Record and Claims Data. Clin. Epidemiol. 2023;15:299–307.


79. Ostropolets A., Reich C., Ryan P. et al. Adapting electronic health records-derived phenotypes to claims data: Lessons learned in using limited clinical data for phenotyping. J. Biomed. Inform. 2020;102.


80. Chen W., Abeyaratne A., Gorham G. et al. Development and validation of algorithms to identify patients with chronic kidney disease and related chronic diseases across the Northern Territory, Australia. BMC Nephrol. 2022;23:1.


81. Shang N., Khan A., Polubriaginof F. et al. Medical records-based chronic kidney disease phenotype for clinical care and “big data” observational and genetic studies. NPJ Digit. Med. 2021;4(1).


82. Ernecoff N., Wessel K., Hanson L. et al. Electronic Health Record Phenotypes for Identifying Patients with Late-Stage Disease: a Method for Research and Clinical Application. J. Gen. Intern. Med. 2019;34(12):2818–2823.


83. Wang H., Du J., Yang Y. et al. Rapid identification of chronic kidney disease in electronic health record database using computable phenotype combining a common data model. Chin. Med. J. 2023;136(7):874.


84. Shang N., Liu C., Rasmussen L. et al. Making work visible for electronic phenotype implementation: lessons learned from the eMERGE network. J. Biomed. Inform. 2019;99:103293.


85. Yamamoto R., Imai E., Maruyama S. et al. Regional variations in immunosuppressive therapy in patients with primary nephrotic syndrome: the Japan nephrotic syndrome cohort study. Clin. Exp. Nephrol. 2018;22(6):1266–1280.


86. Kimura T., Yamamoto R., Yoshino M. et al. Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS). Clin. Exp. Nephrol. 2022;26(12):1170.


87. Testa F., Fontana F., Pollastri F. et al. Automated Prediction of Kidney Failure in IgA Nephropathy with Deep Learning from Biopsy Images. Clin. J. Am. Soc. Nephrol. 2022;17(9):1316–1324.


88. Yoo K., Noh J., Lee H. et al. A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study. Sci. Rep. 2017;7:1.


89. Xi I., Zhao Y., Wang R. et al. Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging. Clin. Cancer Res. 2020;26(8): 1944–1952.


90. Kuo C., Chang C., Liu K. et al. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digit. Med. 2019;2(1).


91. Sabanayagam C., Xu D., Ting D. et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. The Lancet Digit. Heal. Lancet Digit Health, 2020;2(6):e295–e302.


92. Tomašev N., Glorot X., Rae J. et al. A Clinically Applicable Approach to Continuous Prediction of FutureAcute Kidney Injury. Nature. 2019;572:7767:116.


93. Makino M., Yoshimoto R., Ono M. et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci. Rep. 2019;9(1).


94. Park N., Kang E., Park M. et al. Predicting acute kidney injury in cancer patients using heterogeneous and irregular data. PLoS One. 2018;13(7).


95. Tran N.K., Sen S., Palmieri T. et al. Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: A proof of concept. Burns. 2019;45(6):1350–1358.


96. Li Y., Yao L., Mao C. et al. Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes. Proceedings. (IEEE. Int. Conf. Bioinformatics Biomed). 2018;2018:683.


97. Zimmerman L.P., Reyfman P., Smith A. et al. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med. Inform. Decis. Mak. 2019;19(Suppl 1).


98. Regidor D., Kopple J., Kovesdy C. et al. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J. Am. Soc. Nephrol. 2006;17(4):1181–1191.


99. Gilbertson D.T., Ebben J., Foley R. et al. Hemoglobin level variability: Associations with mortality. Clin. J. Am. Soc. Nephrol. 2008;3(1):133–138.


100. Yang W., Israni R., Brunelli S. et al. Hemoglobin variability and mortality in ESRD. J. Am. Soc. Nephrol. 2007;18(12):3164–3170.


101. Lau J., Gangji A., Rabba C. et al. Impact of haemoglobin and erythropoietin dose changes on mortality: a secondary analysis of results from a randomized anaemia management trial. Nephrol. Dial. Transplant. 2010;25(12): 4002–4009.


102. Gaweda A., Jacobs A., Aronoff G. et al. Individualized anemia management in a dialysis facility – long-term utility as a single-center quality improvement experience. Clin. Nephrol. 2018;90(4):276.


103. Rogg S., Fuertinger D., Volkwein S. et al. Optimal EPO dosing in hemodialysis patients using a non-linear model predictive control approach. J. Math. Biol. 2019;79(6):2281.


104. Escandell-Montero P., Chermisi M., Martinez-Martinez J. et al. Optimization of anemia treatment in hemodialysis patients via reinforcement learning. Artif. Intell. Med. 2014;62(1):47–60.


105. Barbieri C., Molina M., Ponce P. et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 2016;90(2):422–429.


106. Lobo B., Abdel-Rahman E., Brown D. et al. A recurrent neural network approach to predicting hemoglobin trajectories in patients with End-Stage Renal Disease. Artif. Intell. Med. 2020;104.


107. Brier M.E., Gaweda A.E., Aronoff G.R. Personalized Anemia Management and Precision Medicine in ESA and Iron Pharmacology in End-Stage Kidney Disease. Semin. Nephrol. 2018;38(4):410–417.


108. 108. Bucalo M., Barbieri C., Roca S. et al. The anaemia control model: Does it help nephrologists in therapeutic decision-making in the management of anaemia? Nefrologia. 2018;38(5):491–502.


109. CDSS - Lexema-Medicine - применение искусственного интеллекта при принятии врачебных решений


110. Чурненко О.В., Лакман И.А., Шкель О.А. и др. Применение алгоритмов искусственного интеллекта для оценки эффективности терапии, назначае- мой диализным пациентам. ОРГЗДРАВ: новости, мнения, обучение. Вестник ВШОУЗ. 2021;2(24)7:103–115. [Chernenko O.V., Lakman I.A., Shkel O.A.


and others. The use of artificial intelligence algorithms to evaluate the effectiveness of therapy prescribed to dialysis patients. GORZDRAV: news, opinions, training. Herald of the University. 2021;2(24)7:103-115 (In Russ.)].


111. Новицкий В.О., Малкоч А.В., Зиновьев Д.А. Применение нейросетевых мето- дов машинного обучения в лечении осложнений у пациентов на гемодиализе. Врач и информационные технологии. 2019;2:29–37.


112. MaXimus


113. iriopol D., Siriopol M., Stuard S. et al. An analysis of the impact of fluid overload and fluid depletion for all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 2019;34(8):1385–1393.


114. Flythe J., Chang T., Gallagher M. et al. Blood pressure and volume management in dialysis: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020;97(5):861.


115. Jambrik Z., Monti S., Coppola V. et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am. J. Cardiol. 2004;93(10): 1265–1270.


116. Tan G., Du T., Liu J. et al. Automated lung ultrasound image assessment using artificial intelligence to identify fluid overload in dialysis patients. BMC Nephrol. 2022;23(1):1–13.


117. Sandys V., Sexton D., O’Seaghdha C. Artificial intelligence and digital health for volume maintenance in hemodialysis patients. Hemodial. Int. 2022;26(4):480.


118. Shavelle D., Desai A., Abraham W. et al. Lower Rates of Heart Failure and All- Cause Hospitalizations During Pulmonary Artery Pressure-Guided Therapy for Ambulatory Heart Failure: One-Year Outcomes From the CardioMEMS Post- Approval Study. Circ. Heart Fail. 2020;13(8): e006863.


119. Vaid A., Takkavatakarn K., Divers J. et al. Deep Learning on Electrocardiograms for Prediction of In-hospital Intradialytic Hypotension in Patients with ESKD. Kidney360, 2023;4(9): e1293.


120. Xu D., Zhou B., Zhang J. et al. Prediction of hyperkalemia in ESRD patients by identification of multiple leads and multiple features on ECG. Renal Failure. 2023;45(1):2212800.


121. Lee H., Moon S., Kim S. et al. Prediction of intradialytic hypotension using pre- dialysis features – a deep learning–based artificial intelligence model. Nephrology Dial. Transplant. 2023;38(10):2310–2320.


122. Li Y., Zhao D., Liu G. et al. Intradialytic hypotension prediction using covariance matrix-driven whale optimizer with orthogonal structure-assisted extreme learning machine. Front. Neuroinform. 2022;16.


123. Rankin S., Han L., Scherzer R. et al. A Machine Learning Model for Predicting Mortality within 90 Days of Dialysis Initiation. Kidney360. 2022;3(9):1556–1565.


124. Yang X., Zhao D., Yu F. et al. An optimized machine learning framework for predicting intradialytic hypotension using indexes of chronic kidney disease-mineral and bone disorders. Comput. Biol. Med. 2022;145.


125. Kim S., Yun D., Kwon S. et al. System of integrating biosignals during hemodialysis: the CONTINUAL (Continuous mOnitoriNg viTal sIgN dUring hemodiALysis) registry. Kidney Res. Clin. Pract. 2022;41(3):363.


126. Chaudhuri S., Han H., Monaghan C. et al. Real-time prediction of intradialytic relative blood volume: a proof-of-concept for integrated cloud computing infrastructure. BMC Nephrology. 2021;22(1).


127. Scherer L., Kuss M., Nahm W. Review of Artificial Intelligence–Based Signal Processing in Dialysis: Challenges for Machine-Embedded and Complementary Applications. Adv. Kidney Dis. Heal. 2023;30(1):40–46.


128. Shutov E., Bolshakov S., Kotlyarova G.The application of modern medical information systems with artificial intelligence elements for personalized treatment of patients on hemodialysis. Nephrology Dialysis Transplantation. 2023;38:706–707.


Об авторах / Для корреспонденции


Шутов Евгений Викторович – д.м.н., профессор; руководитель Межокружного нефрологического центра ГБУЗ ГКБ им. С.П. Боткина ДЗМ, Москва, Россия заведующий кафедрой нефрологии и диализа РМАНПО, Москва, Россия; e-mail: shutov_e_v@mail.ru. https://orcid.org/0000-0002-1047-0378
Большаков Степан Алексеевич – врач-терапевт, младший научный сотрудник отдела наука ГБУЗ ГКБ им. С.П. Боткина ДЗМ, Москва, Россия; e-mail: my@stepan-bolshakov.ru. https://orcid.org/0000-0002-4556-6740.
Долидзе Давид Джонович – д.м.н., профессор, заведующий научно-клиническим отделом ГБУЗ ГКБ им. С.П. Боткина ДЗМ, Москва, Россия. e-mail: ddolidzed@mail.ru. https://orcid.org/0000-0002-0517-8540.
Сороколетов Сергей Михайлович – д.м.н., заместитель главного врача по терапевтической помощи ГБУЗ ГКБ им. С.П. Боткина ДЗМ, Москва, Россия; e-mail: sorokoletov-sm@mail.ru. https://orcid.org/0000-0002-2637-8197.


Похожие статьи


Бионика Медиа