Распространенность и патогенез поражения почек при неалкогольной жировой болезни печени – возможности ранней диагностики с помощью флуоресцентной органоскопии
DOI: https://dx.doi.org/10.18565/nephrology.2025.1.86-94
Лелявина Т.А., Галагудза М.М., Сонин Д.Л., Попов С.В., Гусейнов Р.Г., Бештоев А.Х., Малышев Е.А.
1) ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава РФ, Санкт-Петербург, Россия;
2) СПб ГБУЗ «Клиническая больница Святителя Луки», Санкт-Петербург, Россия;
3) ЧОУ ВО «Санкт-Петербургский медико-социальный институт», Санкт-Петербург, Россия;
4) ФГБОУ ВО «Санкт-Петербургский государственный университет», Санкт-Петербург, Россия
В связи с растущей распространенностью ожирения и диабета во всем мире ожидается рост общей заболеваемости и распространенности неалкогольной жировой болезни печени (НАЖБП). Факторы риска НАЖБП связаны с развитием хронической болезни почек (ХБП). В настоящей статье рассмотрены эпидемиология, факторы риска, генетика и специфические патогенетические механизмы, связывающие НАЖБП с ХБП: эктопическое накопление липидов, нарушения клеточной сигнализации, связь между потреблением фруктозы и накоплением мочевой кислоты и т.д. Обсуждены возможности ранней диагностики данных патологических состояний с помощью флуоресцентной органоскопии.
Литература
- Ammirati A.L. Chronic Kidney Disease. Rev. Assoc. Med. Bras. (1992). 2020;66(Suppl. 1):s3–9. Doi: 10.1590/1806-9282.66.S1.3.
- KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Kidney Int. 2024;105(Suppl. 4):S117–314. Doi: 10.1016/j.kint.2023.10.018.
- Charles C., Ferris A.H. Chronic Kidney Disease. Prim Care. 2020;47(4):585–95. Doi: 10.1016/j.pop.2020.08.001.
- Stevens P.E., Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Ann. Intern. Med. 2013;158(11):825–30. Doi: 10.7326/0003-4819-158-11-201306040-00007.
- Naber T., Purohit S. Chronic Kidney Disease: Role of Diet for a Reduction in the Severity of the Disease. Nutrients. 2021;13(9):3277. Doi: 10.3390/nu13093277.
- August P.N. Chronic Kidney Disease – Another Step Forward. Engl. J. Med. 2023;388(2):179–80. Doi: 10.1056/NEJMe2215286.
- Verhelst D. Characteristics and epidemiology of chronic kidney disease. Soins. 2018 Jun;63(826):14-16. doi: 10.1016/j.soin.2018.04.004.
- Zhang L., Wang F., Wang L. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22. Doi: 10.1016/S0140-6736(12)60033-6.
- Gupta S., Dominguez M., Golestaneh L. Diabetic Kidney Disease: An Update. Med. Clin. North Am. 2023;107(4):689–705. Doi: 10.1016/j.mcna.2023.03.004.
- KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. Kidney Int. 2020;98(4S):S1–115. Doi: 10.1016/j.kint.2020.06.019.
- Hill N.R., Fatoba S.T., Oke J.L. Global Prevalence of Chronic Kidney Disease – A Systematic Review and Meta-Analysis. PLoS One. 2016;11(7):e0158765.
- Duarte M.P., Almeida L.S., Neri S.G.R. Prevalence of sarcopenia in patients with chronic kidney disease: a global systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle. 2024;15(2):501–12.
- Ribeiro H.S., Neri S.G.R., Oliveira J.S. Association between sarcopenia and clinical outcomes in chronic kidney disease patients: A systematic review and meta-analysis. Clin. Nutr. 2022;41(5):1131–40.
- Yang Q., Lang Y., Yang W. Efficacy and safety of drugs for people with type 2 diabetes mellitus and chronic kidney disease on kidney and cardiovascular outcomes: A systematic review and network meta-analysis of randomized controlled trials. .Diab. Res. Clin. Pract. 2023;198:110592.
- Quek J., Chan K.E., Wong Z.Y. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet. Gastroenterol. Hepatol. 2023;8(1):20–30.
- En Li Cho E., Ang C.Z., Quek J. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Loomba R. Gut. 2023;72(11):2138–48. Doi: 10.1136/gutjnl-2023-330110.
- Riazi K., Azhari H., Charette J.H. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851–61.
- Mantovani A., Csermely A., Petracca G. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet. Gastroenterol. Hepatol. 2021;6(11):903–13.
- Jarvis H., Craig D., Barker R. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies. PLoS Med. 2020;17(4):e1003100.
- Kovalic A.J., Cholankeril G., Satapathy S.K. Nonalcoholic fatty liver disease and alcoholic liver disease: metabolic diseases with systemic manifestations. Transl. Gastroenterol. Hepatol. 2019;4:65.
- Eliades M., Spyrou E., Agrawal N., et al. Meta-analysis: vitamin D and non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2013;38:246–54.
- LaClair R.E., Hellman R.N., Karp S.L., et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States. Am. J. Kidney Dis. 2005;45:1026–33.
- Ting-Yao Wang. Association of metabolic dysfunction – associated fatty liver disease with kidney disease Nat. Rev. Nephrol. 2022;18(4):259–68.
- Corey K.E., Kartoun U., Zheng H., Shaw S.Y. Development and Validation of an Algorithm to Identify Nonalcoholic Fatty Liver Disease in the Electronic Medical Record. Dig. Dis. Sci. 2016;61:913–9.
- Халаште А.А., Лялюкова Е.А., Жачемук С.К. и др. Жировая болезнь печени: гетерогенный фенотип. Экспериментальная и клиническая гастроэнтерология. 2024;223(3):5–13. Doi: 10.31146/1682-8658-ecg-223-3-5-13.
- Maev I.V., Andreev D.N., Kucheryavyy Yu.A. Prevalence of non-alcoholic fat disease liver in Russian Federation: meta-analysis. Consilium Medicum. 2023;25(5):313–9.
- Ye Q, Zou B., Yeo Y.H., Li J. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet. Gastroenterol. Hepatol. 2020;5(8):739–52.
- Mantovani A., Zaza G., Byrne C.D., et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2018;79:64–76. Doi: 10.1016/j.metabol.2017.11.003.
- Papatheodoridi M., Cholongitas E. Diagnosis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Concepts. Curr. Pharm. Des. 2018;24(38):4574–86.
- Huh J.H., Kim J.Y., Choi E., et al. The fatty liver index as a predictor of incident chronic kidney disease in a 10-year prospective cohort study. PLoS One. 2017;12:e0180951.
- Hsieh M.H., Wu K.T., Chen Y.Y., et al. Higher NAFLD fibrosis score is associated with impaired eGFR. J. Formos Med. Assoc. 2020;119:496–503.
- Önnerhag K., Hartman H., Nilsson P.M., Lindgren S. Non-invasive fibrosis scoring systems can predict future metabolic complications and overall mortality in non-alcoholic fatty liver disease (NAFLD). Scand. J. Gastroenterol. 2019;54:328–34.
- Wijarnpreecha K., Thongprayoon C., Scribani M., et al. Noninvasive fibrosis markers and chronic kidney disease among adults with nonalcoholic fatty liver in USA. Eur. J. Gastroenterol. Hepatol. 2018;30:404–10.
- Choi J.W., Lee C.H., Park J.S. Comparison of laboratory indices of non-alcoholic fatty liver disease for the detection of incipient kidney dysfunction. Peer J. 2019;7:e6524.
- Yilmaz Y., Alahdab Y.O., Yonal O., et al. Microalbuminuria in nondiabetic patients with nonalcoholic fatty liver disease: association with liver fibrosis. Metabolism. 2010;59:1327–30.
- Yasui K., Sumida Y., Mori Y., et al. Nonalcoholic steatohepatitis and increased risk of chronic kidney disease. Metabolism. 2011;60:735–9.
- Machado M.V., Gonçalves S., Carepa F., et al. Impaired renal function in morbid obese patients with nonalcoholic fatty liver disease. Liver Int. 2012;32:241–8.
- Corey K.E., Kartoun U., Zheng H., Shaw S.Y. Development and Validation of an Algorithm to Identify Nonalcoholic Fatty Liver Disease in the Electronic Medical Record. Dig. Dis. Sci. 2016;61:913–9.
- Targher G., Byrne C.D. Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nat. Rev. Nephrol. 2017;13:297–310.
- Campos G.M., Bambha K., Vittinghoff E., et al. A clinical scoring system for predicting nonalcoholic steatohepatitis in morbidly obese patients. Hepatology. 2008;47:1916–23.
- Targher G., Bertolini L., Rodella S., et al. Relationship between kidney function and liver histology in subjects with nonalcoholic steatohepatitis. Clin. J. Am. Soc. Nephrol. 2010;5:2166–71.
- Targher G., Bertolini L., Rodella S., et al. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetol. 2008;51:444–50.
- Targher G., Pic.hiri I., Zoppini G., et al. Increased prevalence of chronic kidney disease in patients with Type 1 diabetes and non-alcoholic fatty liver. Diab. Med. 2012;29:220–6.
- Li G., Shi W., Hug H., et al. Nonalcoholic fatty liver disease associated with impairment of kidney function in nondiabetes population. Biochem. Med. (Zagreb) 2012;22:92–9.
- Huh J.H., Kim J.Y., Choi E., et al. The fatty liver index as a predictor of incident chronic kidney disease in a 10-year prospective cohort study. PLoS One. 2017;12:e0180951.
- Shen Z.W., Xing J., Wang Q.L., et al. Association between serum γ-glutamyltransferase and chronic kidney disease in urban Han Chinese: a prospective cohort study. Int. Urol. Nephrol. 2017;49:303–12.
- Kunutsor S.K., Laukkanen J.A. Gamma-glutamyltransferase and risk of chronic kidney disease: A prospective cohort study. Clin. Chim. Acta. 2017;473:39–44.
- Sinn D.H., Kang D., Jang H.R., et al. Development of chronic kidney disease in patients with non-alcoholic fatty liver disease: A cohort study. J. Hepatol. 2017;67:1274–80.
- Le M.H., Le D.M., Baez T.C. A systematic review and meta-analysis of 63 studies and 1,201,807 persons. J. Hepatol. 2023;79(2):287–95.
- Musso G., Gambino R., Tabibian J.H., et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001680. Doi: 10.1371/journal.pmed.1001680.
- Mantovani A., Zaza G., Byrne C.D., et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2018;79:64–76.
- Park H., Dawwas G.K., Liu X., Nguyen M.H. Nonalcoholic fatty liver disease increases risk of incident advanced chronic kidney disease: a propensity-matched cohort study. J. Intern. Med. 2019;286:711–22.
- Jennison E., Patel J., Scorletti E., Byrne C.D. Diagnosis and management of non-alcoholic fatty liver disease. Postgrad. Med. J. 2019;95:314–22.
- Parikh A., Chase H.S., Vernocchi L., Stern L. Vitamin D resistance in chronic kidney disease (CKD) BMC. Nephrol. 2014;15:47.
- Xu L., Wan X., Huang Z., et al. Impact of vitamin D on chronic kidney diseases in non-dialysis patients: a meta-analysis of randomized controlled trials. PLoS One. 2013;8:e61387.
- Dasarathy J., Varghese R., Feldman A., et al. Patients with Nonalcoholic Fatty Liver Disease Have a Low Response Rate to Vitamin D Supplementation. J. Nutr. 2017;147:1938–46.
- NIH Effect on Liver Histology of Vitamin D in Patients With Non-alcoholic Steatohepatitis.
- NIH Study of Vitamin D3 Supplementation in Patients With Chronic Kidney Disease. (cited 7 November 2020). https://clinicaltrials.gov/ct2/results?cond=&term=NCT00893451&cntry=&state=&city=&dist=.
- NIH DHA and Vitamin D in Children With Biopsy-proven NAFLD. (cited 7 November 2020). https://clinicaltrials.gov/ct2/results?cond=&term=+NCT02098317&cntry=&state=&city=&dist=.
- García-Lezana T., Raurell I., Bravo M., et al. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis. Hepatology. 2018;67:1485–98.
- Bergheim I., Weber S., Vos M., et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J. Hepatol. 2008;48:983–92.
- Younossi Z., Anstee Q.M., Marietti M., et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018;15:11–20.
- Wong R.J., Aguilar M., Cheung R., et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148:547–55.
- Formica R.N., Aeder M., Boyle G., et al. Simultaneous Liver-Kidney Allocation Policy: A Proposal to Optimize Appropriate Utilization of Scarce Resources. Am. J. Transplant. 2016;16:758–66.
- Dulai P.S., Singh S., Patel J. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology. 2017;65(5):1557–65.
- Chen P.C., Kao W.Y., Cheng Y.L., et al. The correlation between fatty liver disease and chronic kidney disease. J. Formos. Med. Assoc. 2020;119:42–50.
- Yeung M.W., Wong G.L., Choi K.C., et al. Advanced liver fibrosis but not steatosis is independently associated with albuminuria in Chinese patients with type 2 diabetes. J. Hepatol. 2017;6(S0168-8278(17):32334–6. Doi: 10.1016/j.jhep.2017.09.020.
- Lombardi R., Airaghi L., Targher G., et al. Liver fibrosis by FibroScan® independently of established cardiovascular risk parameters associates with macrovascular and microvascular complications in patients with type 2 diabetes. Liver Int. 2020;40:347–34.
- Qin S., Wang S., Wang X., Wang J. Liver stiffness assessed by transient elastography as a potential indicator of chronic kidney disease in patients with nonalcoholic fatty liver disease. J. Clin. Lab. Anal. 2019;33:e22657.
- Chon Y.E., Kim H.J., Choi Y.B., et al. Decrease in waist-to-hip ratio reduced the development of chronic kidney disease in non-obese non-alcoholic fatty liver disease. Sci. Rep. 2020;10:8996.
- Ampuero J., Aller R., Gallego-Durán R., et al. HEPAmet Registry. The effects of metabolic status on non-alcoholic fatty liver disease-related outcomes, beyond the presence of obesity. Aliment. Pharmacol. Ther. 2018;48:1260–70.
- He Y., et al. Relationship between obesity related indicators and non-alcoholic fatty liver disease in children: a systematic review and meta-analysis. Transl. Pediatr. 2023.
- Lu F.B., et al. The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert. Rev. Gastroenterol. Hepatol. 2018.
- Raj D., Tomar B., Lahiri A., Mulay S.R. The gut-liver-kidney axis: Novel regulator of fatty liver associated chronic kidney disease. Pharmacol. Res. 2020;152:104617.
- Willy J.A., Young S.K., Stevens J.L., et al. CHOP links endoplasmic reticulum stress to NF-κB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol. Biol. Cell. 2015;26:2190–204.
- Marcuccilli M., Chonchol M. NAFLD and Chronic Kidney Disease. Int. J. Mol. Sci. 2016;17:562.
- Targher G., Chonchol M.B., Byrne C.D. CKD and nonalcoholic fatty liver disease. Am. J. Kidney Dis. 2014;64:638–52.
- Sabio G., Das M., Mora A., et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008;322:1539–43.
- Khukhlina O.S., Antoniv A.A., Mandryk O.Y., et al. The role of endothelial dysfunction in the progression mechanisms of non-alcoholic steatohepatitis in patients with obesity and chronic kidney disease. Wiad Lek. 2019;72:523–6.
- Hübscher S.G. Histological assessment of non-alcoholic fatty liver disease. Histopathology. 2006;49:450–65.
- Sieber J., Lindenmeyer M.T., Kampe K., et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal. Physiol. 2010;299:F821–9. Doi: 10.1152/ajprenal.00196.2010.
- Joles J.A., van Goor H., van der Horst M.L., et al. High lipid levels in very low density lipoprotein and intermediate density lipoprotein may cause proteinuria and glomerulosclerosis in aging female analbuminemic rats. Lab. Invest. 1995;73:912–21.
- Lindenmeyer M.T., Rastaldi M.P., Ikehata M., et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J. Am. Soc. Nephrol. 2008;19:2225–36.
- Monteillet L., Gjorgjieva M., Silva M., et al. Intracellular lipids are an independent cause of liver injury and chronic kidney disease in non alcoholic fatty liver disease-like context. Mol. Metab. 2018;16:100–15.
- Musso G., Cassader M., Cohney S., et al. Fatty Liver and Chronic Kidney Disease: Novel Mechanistic Insights and Therapeutic Opportunities. Diab. Care. 2016;39(10):1830–45.
- Choi H.K., Ford E.S. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am. J. Med. 2007;120:442–7.
- Babio N., Martínez-González M.A., Estruch R., et al. Associations between serum uric acid concentrations and metabolic syndrome and its components in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2015;25:173–80.
- Zurlo A., Veronese N., Giantin V., et al. High serum uric acid levels increase the risk of metabolic syndrome in elderly women: The PRO.V.A study. Nutr. Metab. Cardiovasc. Dis. 2016;26:27–35.
- Sun H.L., Pei D., Lue K.H., et al. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study. PLoS One. 2015;10:e0143786.
- Yuan H., Yu C., Li X., et al. Serum Uric Acid Levels and Risk of Metabolic Syndrome: A Dose-Response Meta-Analysis of Prospective Studies. J. Clin. Endocrinol. Metab. 2015;100:4198–207.
- Johnson R.J., Nakagawa T., Jalal D., et al. Uric acid and chronic kidney disease: which is chasing which? Nephrol. Dial. Transplant. 2013;28:2221–8.
- Sharaf El Din U.A.A., Salem M.M., Abdulazim D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017;8:537–48.
- Lanaspa M.A., Sanchez-Lozada L.G., Cicerchi C., et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS One. 2012;7:e47948.
- Kimura K., Hosoya T., Uchida S., et al. FEATHER Study Investigators. Febuxostat Therapy for Patients With Stage 3 CKD and Asymptomatic Hyperuricemia: A Randomized Trial. Am. J. Kidney Dis. 2018;72:798–810.
- Liu H., Narayanan R., Hoffmann M., Surapaneni S. The Uremic Toxin Indoxyl-3-Sulfate Induces CYP1A2 In Primary Human Hepatocytes. Drug Metab. Lett. 2016;10:195–9.
- Tang W.H., Wang Z., Kennedy D.J., et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015;116:448–55.
- Tan X., Liu Y., Long J., et al. Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Mol. Nutr. Food Res. 2019;63:e1900257.
- Anstee Q.M., Seth D., Day C.P. Genetic Factors That Affect Risk of Alcoholic and Nonalcoholic Fatty Liver Disease. Gastroenterol. 2016;150:1728–44. Doi: 10.1053/j.gastro.2016.01.037.
- Козлов Д.С., Родимова С.А., Кузнецова Д.С. Роль микроРНК в функционировании печени: от биогенеза до терапевтических подходов (обзор). Современные технологии в медицине. 2023;15(5):54. Doi: https://doi.org/10.17691/stm2023.15.5.06.
- Johnson R.J., Nakagawa T., Jalal D., et al. Uric acid and chronic kidney disease: which is chasing which? Nephrol. Dial. Transplant. 2013;28:2221–8.
- Shimano H., Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat. Rev. Endocrinol. 2017;13:710–30.
- Lombardi R., Airaghi L., Targher G., et al. Liver fibrosis by FibroScan® independently of established cardiovascular risk parameters associates with macrovascular and microvascular complications in patients with type 2 diabetes. Liver Int. 2020;40:347–54.
- Anstee Q.M., Seth D., Day C.P. Genetic Factors That Affect Risk of Alcoholic and Nonalcoholic Fatty Liver Disease. Gastroenterol. 2016;150:1728–44.
- Macaluso F.S., Maida M., Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J. Gastroenterol. 2015;21:11088–111.
- Musso G., Cassader M., Gambino R. PNPLA3 rs738409 and TM6SF2 rs58542926 gene variants affect renal disease and function in nonalcoholic fatty liver disease. Hepatology. 2015;62:658–9.
- Oniki K., Saruwatari J., Izuka T., et al. Influence of the PNPLA3 rs738409 Polymorphism on Non-Alcoholic Fatty Liver Disease and Renal Function among Normal Weight Subjects. PLoS One. 2015;10:e0132640.
- Sun D.Q., Zheng K.I., Xu G., et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury in NAFLD patients with persistently normal ALT levels. Liver Int. 2020;40:107–19.
- Mantovani A., Zusi C., Sani E., et al. Association between PNPLA3rs738409 polymorphism decreased kidney function in postmenopausal type 2 diabetic women with or without non-alcoholic fatty liver disease. Diab. Metab. 2019;45:480–7.
- Sookoian S., Castaño G.O., Scian R., et al. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology. 2015;61:515–25.
- Bulum T., Kolarić B., Duvnjak M., Duvnjak L. Alkaline phosphatase is independently associated with renal function in normoalbuminuric type 1 diabetic patients. Ren Fail. 2014;36:372–7.
- Pantsari M.W., Harrison S.A. Nonalcoholic fatty liver disease presenting with an isolated elevated alkaline phosphatase. J. Clin. Gastroenterol. 2006;40:633–5.
- Satchell S.C., Tooke J.E. What is the mechanism of microalbuminuria in diabetes: a role for the glomerular endothelium? Diabetol. 2008;51:714–25.
- Thamer C., Tschritter O., Haap M., et al. Elevated serum GGT concentrations predict reduced insulin sensitivity and increased intrahepatic lipids. Horm. Metab. Res. 2005;37:246–51.
- Ryu S., Chang Y., Kim D.I., et al. Gamma-Glutamyltransferase as a predictor of chronic kidney disease in nonhypertensive and nondiabetic Korean men. Clin. Chem. 2007;53:71–7.
- Arase Y., Suzuki F., Kobayashi M., et al. The development of chronic kidney disease in Japanese patients with non-alcoholic fatty liver disease. Intern. Med. 2011;50:1081–7.
- Fahmida Shams. Association between Non-Alcoholic Fatty Liver Disease and Carotid Artery Intima-Media Thickness on B-Mode Ultrasonogram. Bangladesh Critical Care J. 20208(2):112–9.
- Tanase D.M., Gosav E.M., Costea C.F The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diab. Res. 2020;2020:3920196.
- Polyzos S.A., Kountouras J., Mantzoros C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019;92:82–97.
- Rong L., Zou J., Ran W. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front. Endocrinol. (Lausanne). 2023;13:1087260.
- Tilg H., Adolph T.E., Dudek M., Knolle P. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat. Metab. 2021;3(12):1596–607.
- Tanase D.M., Gosav E.M., Costea C.F. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diab. Res. 2020;2020:3920196.
- En Li Cho E., Ang C.Z., Quek J. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Gut. 2023;72(11):2138–48.
- Kim K.S., Hong S., Han K., Park C.Y. Association of non-alcoholic fatty liver disease with cardiovascular disease and all cause death in patients with type 2 diabetes mellitus: nationwide population based study. BMJ. 2024;384:e076388.
- Liu D., Zheng J., Zhang Q., et al. A combined autofluorescence and diffuse reflectance spectroscopy for mucosa tissue diagnosis: Dual-distance system and data-driven decision. J. Biophotonics. 2023;16(10):e202300086.
- Bentahar S., Gómez-Gaviro M.V., Desco M., et al. Multispectral imaging for characterizing autofluorescent tissues. Sci. Rep. 2024;14(1):12084.
- Колпакова М.Э., Нутфуллина Г.М., Папаян Г.В., Петрищев Н.Н. Изменение аутофлуоресцентной картины почки при кратковременной ишемии у крыс. Регионарное кровообращение и микроциркуляция. 2009;8(1):53–56.
- Raman R.N., Pivetti C.D., Matthews D.L., et al. Quantification of in vivo autofluorescence dynamics during renal ischemia and reperfusion under 355 nm excitation. Opt. Express. 2008;16(7):4930–44.
- Gerken A.L.H., Nowak K., Meyer A., et al. Quantitative assessment of intraoperative laser fluorescence angiography with indocyanine green predicts early graft function after kidney transplantation. Ann. Surg. 2022;276(2):391–7.
Об авторах / Для корреспонденции
Лелявина Т.А. – д.м.н., ведущий научный сотрудник НИО микроциркуляции и метаболизма миокарда Института экспериментальной медицины
ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава РФ. Адрес: 198992 Санкт-Петербург; e-mail: tatianalelyavina@mail.ru. ORCID: https:// orcid.org/0000-0001-6796-4064.
Галагудза М.М. – д.м.н., профессор и чл.-корр. РАН, директор института экспериментальной медицины, ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава РФ.
Адрес: 198992, Россия, Санкт-Петербург, ул. Аккуратова, 2.
Сонин Д.Л. – к.м.н., заведующий НИО микроциркуляции и метаболизма миокарда, ФГБУ «НМИЦ им. В.А. Алмазова». Адрес: 198992, Россия, Санкт-Петербург, ул. Аккуратова, 2.
Попов С.В. – д.м.н., профессор; главный врач, руководитель городского центра эндоскопической урологии и новых технологий СПб ГБУЗ «Клиническая больница Святителя Луки». Адрес: 194044, Россия, Санкт-Петербург, ул. Чугунная, 46; e-mail: doc.popov@gmail.com. https://orcid.org/0000-0003- 2767-7153.
Гусейнов Р.Г. — к.м.н., заместитель главного врача по научной деятельности СПб ГБУЗ «Клиническая больница Святителя Луки». Адрес: 194044, Россия,
Санкт-Петербург, ул. Чугунная, 46; e-mail: rusfa@yandex.ru. https:// orcid.org/0000-0001-9935-0243.
Бештоев А.Х. – научный сотрудник СПб ГБУЗ Клиническая больница Святителя Луки. Адрес: 194044, Россия, Санкт-Петербург, ул. Чугунная, 46, +7 (812) 576‒11‒08, e-mail: akhmed.beshtoev@gmail.com. ORCID iD 0009-0004-9544-7944.
Малышев Е.А. – научный сотрудник СПб ГБУЗ «Клиническая больница Святителя Луки». Адрес: 194044 Санкт-Петербург, ул. Чугунная, д. 46;
тел.: +7 (812) 576-11-08; e-mail: malyshevyegor@gmail.com. ORCID: 0000-0001-6294-6182.
Похожие статьи