Роль матриксных металлопротеиназ в прогрессировании наследственных заболеваний почек (Обзор литературы)


З.Р. Баширова

ФГБУ «Московский НИИ педиатрии и детской хирургии» Минздрава России
Настоящий обзор посвящен роли матриксных металлопротеиназ при наследственных почечных заболеваниях: синдроме Альпорта и кистозах почек.

Литература



  1. Клишо Е.В., Кондакова И.В., Чойнзонов Е.Л. и др. Прогностическая значимость протеаз у больных плоскоклеточными карциномами головы и шеи. Бюллетень СО РАМН. 2005; 2 (116): 82–91.

  2. Nagase H., Woessner J.F. Matrix metalloproteinases. J Biol Chem 1999; 274 31: 21 491–21 494.

  3. Соловьева Н.И. Матриксные металлопротеиназы и их биологические функции. Журн. биоорган. химии 1998; 24: 217–226.

  4. Catania J.M., Chen G., Parrish A.R. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 2007; 292: 905–911.

  5. Eddy A.A. Plasminogen activator inhibitor-1 and the kidney. Am J Physiol Renal Physiol. 2002 Aug; 283(2):F209–200.

  6. Visse R. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Res 2003; 2: 827–839.

  7. Бобкова И.Н., Козловская Л.В., Ли О.А. Роль матриксных металлопротеиназ в патогенезе заболеваний почек. Тер арх. 2008; 6: 86–90.

  8. Sternlicht M.D. How matrix metalloproteinases regulate cell behavior. Аnnu. Rev. Cell. Dev. Biol 2001; 17: 463–516.

  9. Mohammed F. F. Metalloproteinases, inflammation, and rheumatoid arthritis. Rheum 2003; 62: 1143–1147.

  10. Dreier R. Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). Cell Science 2001; 114: 3813–3822.

  11. Sawicki G. Interaction of keratinocytes and fibroblasts modulates the expression of matrix metalloproteinases-2 and -9 and their inhibitors. Mol. Cell. Biochem 2005; 269: 209–216.

  12. Douthwaite J.A., Jonson T.S. Effects of transforming growth factor-β1 on renal extracellular matrix components and their regulating proteins. J Am Soc Nephrol 1999; 10: 2109–2119.

  13. Gong R., Rifair A., Tolbert E.M. et al. Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolytic pathways in progressive renal interstitial fibrosis. J Am Soc Nephrol 2003; 14: 3047–3060.

  14. MacNaul K. L. Discoordinate Expression of Stromelysin, Collagenase and Tissue Inhibitor of Metalloproteinases-1 in Rheumatoid Human Synovial Fibroblasts. Synergistic Effects of Interleukin-1 and Tumor Necrosis Factor-cx on Stromelysin Expression. Biol. Chem 1990; 265: 17238–17245.

  15. Ohtomo S., Nangaku M., Izuhara Y. et al. The role of megsin, a serine protease inhibitor, in diabetic mesangial matrix accumulation. Kidney Int 2008; 74: 768–774.

  16. Curry T.E., Osteen K.G. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocrinol.Rev.-2003; 24: 428–465.

  17. Murphy G., Segain J.P. et al. The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J.Biol.Chem 1993; 268: 15435–15441.

  18. Aimes R.T., Quigley J.P. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J.Biol.Chem.1995; 270: 5872–5876.

  19. Shapiro S.D., Griffin G.L., Gilbert D.J. et.al. Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase. J Biol. Chem.1992;267:4664–4671.

  20. Lenz O., Elliot S.J., Stetler-Stevenson W.G. Matrix metalloproteinases in renal development and disease. J Am Soc Nephrol 2000;11: 574–581.

  21. Keeling J., Herrera G.A. Human matrix metalloproteinases: characteristics and pathologic role in altering mesangial homeostasis. Microsoc Res Tech 2008; 71: 371–379.

  22. Thrailkill K.M., Clay Bunn R., Fowlkes J.L. Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 2009; 35:1—10.

  23. Andrews K.L., Betsuyaku T., Rogers S. et al. Gelatinase B (MMP-9) is not essential in the normal kidney and does not influence progression of renal disease in a mouse model of Alport syndrome. Am J Pathol 2000; 157: 303–311.

  24. Rao V.N., Lees G. E., Kashtan C. E. et al. Increased expression of MMP-2,MMP-9(type IV collagenas/gelatinases), and MT-1 MMP in canine X-linked Alport syndrome (XLAS). Kidney Int 2003; 63:1736–1748.

  25. Rao V. H., Lees G. E., Kashtan C. E. et al. Dysregulation of renal MMP-3 and MMP-7 in canine X-linked Alport syndrome. Pediatr Nephrol. 2005 Jun; 20(6):732–739.

  26. Zeisberg М., Khurana М., Velidi H. Rao et al. Stage-Specific Action of Matrix Metalloproteinases Influences Progressive Hereditary Kidney Disease. PLoS Med 2006; 4: 535–546.

  27. Cosgrove D., Meehan D. T., Delimont D. Integrin alpha1 beta1 regulates matrix metalloproteinases via P38 mitogen-activated protein kinase in mesangial cells: implications for Alport syndrome. Am J Pathol 2008; 172: 761–773.

  28. Rao V. N., Meehan D. T., Delimont D. et al. Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am J Pathol 2006; 169: 26–29.

  29. Meehan D. T., Delimont D., Cheung L. et al. Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease. Kidney Int 2009; 76: 968–976.

  30. Candiano G., Gusmano R., Altieri P. et al. Extracellular matrix formation by epithelial cells from human polycystic kidney cysts in culture. Cell Pathol 1992; 63: 1–9.

  31. Rankin C. A., Suzuki K., Itoh Y. et al. Matrix metalloproteinases and TIMPS in cultured C57BL/6J-cpk kidney tubules. Kidney int.1996; 50: 835–844.

  32. Rankin C.A, Itoh Y., Tian C. et al. Matrix Metalloproteinase-2 in a Murine Model of infantile-type polycystic kidney disease. J.Am Soc Nephrol 1999; 10: 210–217.

  33. Schaefer L., Han X., Gretz N. et al. Schaefer RM. Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han: SPRD rat. Kidney Int. 1996; 49:75–81.

  34. Takagi H., Umemoto T. Matrix metalloproteinases synthesized in autosomal dominant kidney disease play a role in development of a concurrent abdominal aortic aneurism. Med Hypotheses 2005; 64: 778–781.

  35. Harada H., Furuya M., Ishikura H. et al. Expression of matrix metalloproteinases in the fluids of renal cystic lesions. J Urol 2002; 168: 19–22.

  36. Nakamura T., Ushiyama C., Suzuki S., et al . Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am J Nephrol 2000; 23.

  37. Liu B., Li C., Liu Z. et al. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease. BMC Nephrol 2012; 11: 109.doi: 10.1186/1471–2369–13–109.

  38. Osten L., Kubitsa M., Gallagher AR. Doxycycline accelerates renal cyst growth and fibrosis in the pcy/pcy mouse model of type 3 nephronophthisis, a form of recessive polycystic kidney disease. Histochem Cell Biol 2009; 132: 199–210.

  39. Berthier C. C. , Wahl P. R., Le Hir M. et al. Sirolimus ameliorates the enhanced expression of metalloproteinases in a rat model of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2008; 23: 880–889.

  40. Obermüller N., Morente N., Kränzlin B. et al. A possible role for metalloproteinases in renal cyst development. Am J Physiol Renal Physiol. 2001; 280: 540–550.


Об авторах / Для корреспонденции


Баширова З.Р. – ФГБУ «Московский НИИ педиатрии и детской хирургии»
Минздрава России, отделение наследственных и приобретенных болезней почек, аспирант
E-mail: Z-Bash@mail.ru


Похожие статьи


Бионика Медиа