Экспериментальные модели поражения тубулоинтерстициальной ткани почек при артериальной гипертензии


Г.П. Арутюнов, А.В. Соколова, Л.Г. Оганезова

ГОУ ВПО РГМУ Росздрава, Москва; ГУЗ “Городская поликлиника № 211” Управления здравоохранения ЮАО Москвы
Обсуждаются экспериментальные модели поражения почечного тубулоинтерстиция и его значение при артериальной гипертензии.

Литература


1. Dahl L.K., Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res 1975;36:692–696.
2. Fox U., Bianchi G. The primary role of the kidney in causing blood pressure difference between the Milan hypertensive strain (MHS) and normotensive rats. Clin Exp Pharmacol Physiol 1976;3(Suppl. 3):71–74.
3. Kawabe K., Watanabe T.X., Shiono K. et al. Influence on blood pressure of renal isografts between spontaneously hypertensive and normotensive rats, utilizing F1 hybrids. Jpn Heart J 1978;19:886–894.
4. Curtis J.J., Luke R.G., Dustan H.P. et al. Remission of essential hypertension after renal transplantation. N Engl J Med 1983;309:1009–1015.
5. Johnson R.J., Herrera-Acosta J., Schreiner G.F. et al. Subtle Acquired Renal Injury as a Mechanism of Salt-Sensitive Hypertension. Mechanisms of Disease. N Engl J Med 2002;346:913–923.
6. Cowley A.W., Roman R.J. The role of the kidney in hypertension. JAMA 1996;275:1581–1589.
7. Hawkins. National Heart, Lung, and Blood Institute (NHLBI). Hypertension Detection and Follow-Up Program (HDFP). Last Updated on December 21, 2005.
8. Veterans administration cooperative study group on antihypertensive agents. Effecta of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. J. Am. Med. Assoc. 1970;213(7):1143–1152.
9. Siewert-Delle A., Liungman S., Andersson O.K. et al. Does treated primary hypertension lead to end-stage renal deisease? A 20-year follow-up of Primary Prevention Study in Goteborg, Sweden. Nephrol. Dial Transplant 1998;13:3084–3090.
10. Klag M.J., Whelton P.K., Randall B.K. et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–18.
11. Tozawa M., Iseki K., Iseki C. et al. Blood pressure predicts risk of developing of end-stage renal disease in men and women. Hypertension 2003; 41:1341–1345.
12. Innes A., Johnston P.A., Morgan A.G. et al. Clinical features of benign hypertensive nephrosclerosis at time of renal biopsy. Quart J Med 1993;86:271–275.
13. Li L.S, Liu Z.H. Epidemiologic data of renal diseases from a single unit in China: Analysis based on 13,519 renal biopsies. Kidney Int. 2004; 66:920–923.
14. Vikse B.E. Nephrol. Clinical prognostic factors in biopsy-proven benign nephrosclerosis. Nephrol.Dial Transplant 2003;18:517–23.
15. Батюшин М.М., Повилайтите П.Е. Клиническая нефрология. Руководство. Издательство Элиста: ЗАОр НПП “Джангар”, 2009. 457–458.
16. Risdon RA, Sloper JC, de Vardener HE. Relationship between renal function and histologic changes found in renal biopsy specimens from patients with persistent glomerulonephritis. Lancet. 1968;2:363–366.
17. Schainuck L.I., Stricker G.E., Cutler R.E., et al. Structural-functional correlations in renal disease. Hum Pathol. 1970;1:631–641.
18. Савош В.В., Летковская Т.А., Черствый Е.Д. и др. Клеточные механизмы формирования тубулоинтерстициальных изменений при первичных гломерулопатиях. Медицинский журнал. Белорусский государственный медицинский университет. 2007;4:98–100.
19. Крстич Р.В. Иллюстрированная энциклопедия по гистологии человека. Издательство Сотис: СПб., 2001. 138 с. 20. Козловская Л.В., Бобкова И.Н., Варшавский В.А. и др. Фибронектин мочи как показатель процессов фиброзирования в почках при нефрите. Тер. арх. 1999;6:34–38.
21. D’Amico G., Ferrario F., Rastaldi M.P. Tubulointerstitial damage in glomerular diseases: its role in the progression of renal damage. Am J Kidney Dis. 1995;26:124–132.
22. Fine L.G, Ong A.C.M., Norman J.T. Mechanisms of tubulointerstitial injury in progressive renal diseases. Eur J Clin Invest. 1993;23:259–265.
23. Strutz, F., Neilson E.G. New insights into mechanisms of fibrosis in immune injury. Springer Seminars in Immunopathology. 2003;24(4):459–476.
24. Kairaitis L.K., Harris D.C. Tubular-interstitial interactions in proteinuric renal diseases. Nephrology. 2001;6:198–207.
25. Sanchez-Lozada L.G., Tapia E., Johnson R.J. et al. Glomerular hemodynamic changes associated with arteriolar lesions and tubulointerstitial inflammation. Kidney International 2003;64:S9–S14.
26. Takase O., Hirashi J., Takayanagi A. et al Gene transfer of truncated IkBa prevents tubulointerstitial injury. Kidney Int 2003;63:501–513.
27. Alvarez V., Quiroz Y., Nava M. et al Overload proteinuria is followed by saltsensitive hypertension caused by renal infiltration of immune cells. Am J Physiol Renal Physiol 2002;283:F1132–F1141.
28. Eddy A.A., Giachelli C.M. Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int 1995;47:1546–1557.
29. Zoja C., Donadelli R., Colleoni S. et al Protein overload stimulated RANTES production by proximal tubular cells depending on NF-kB activation. Kidney Int 1998;53:1608−1615.
30. Tang S., Leunhg J.C.K., Abe K. et al Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest 2003;111:515–527.
31. Gomez-Garre D., Largo R., Tejera N. et al Activation of NF-kB in tubular epithelial cells of rats with intense proteinuria. Role of angiotensin II and endothelin-1. Hypertens 2001;37:1171–1178.
32. Largo R., Gomez-Garre D., Soto K. et al Angiotensin-converting enzyme is upregulated in the proximal tubules of rats with intense proteinuria. Hypertens 1999;33:732–739.
33. Helle F., Vagnes O.B., Iversen B.M. Angiotensin II-induced calcium signaling in the afferent arteriole from rats with two-kidney, one-clip hypertension. Am. J. Physiol. Renal Physiol. 2006;291:F140–F147.
34. Ingelfinger J.R., Dzau V.J. Molecular biology of renal injury: emphasis on the role of the rennin-angiotensin system. J. Am. Soc. Nephrol. 1991;2:S9–S20.
35. Steinmetz O.M., Sadaghiani S., Panzer U., et al. Antihypertensive therapy induces compartment-specific chemokine expression and a Th1 immune response in the clipped kidney of Goldblatt hypertensive rats. Am. J. Physiol. Renal Physiol. 2007;292: F876–F887.
36. Haller H., Park J.-K., Dragun D., et al. Leukocyte infiltration and ICAM-1 expression in two-kidney one-clip hypertension. Nephrol. Dial. Transplant. 1997;12:899–903.
37. Florian J.A., Watts S.W. Epidermal growth factor: a potent vasoconstrictor in experimental hypertension. Am. J. Physiol. Heart Circ. Physiol. 1999; 276:976–983.
38. Wiesel P., Mazzolai L., Nussberger J. et al. Two-kidney, one clip and onekidney, one clip hypertension in mice. Hypertension. 1997;29:1025–1030.
39. Dobrian A., Wade S.S., Prewitt R.L. PDGF-A expression correlates with blood pressure and remodeling in 1K1C hypertensive rat arteries. Am. J. Physiol. Heart Circ. Physiol. 1999;276:2159–2167.
40. De Champlain J., Mueller R.A., Axelrod J. Turnover and synthesis of norepinephrine in experimental hypertension in rats. Circ Res 1969; 25:285–291.
41. Schenk J., McNeill J.H. The pathogenesis of DOCA-salt hypertension. J. Pharmacol. Toxicol. Methods 1992;27:161–170.
42. De Champlain J., Krakoff L.R, Axelrod J. Catecholamine metabolism in experimental hypertension in the rat. Circ. Res. 1967;20:136–145.
43. Hilditch A., Hunt A.A., Gardner C.J. et al. Cardiovascular effects of GR117289, a novel angiotensin AT1 receptor antagonist. Br. J. Pharmacol. 1994; 111:137–144.
44. Li J.S., Schurch W., Schiffrin E.L. Renal and vascular effects of chronic endothelin receptor antagonism in malignant hypertensive rats. Am. J. Hypertens. 1996; 9:803–811.
45. Garwitz E.T, Jones A.W. Aldosterone infusion into the rat and dosedependent changes in blood pressure and arterial ionic transport. Hypertension 1982;4:374–381.
46. White P.C. Inherited forms of mineralocorticocoid hypertension. Hypertension 1996;28:927–936.
47. Doggrell S.A., Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovascular Research. 1998;89:39–41.
48. Giachelli C.M., Bae N., Almeida M. et al. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 1993; 92:1686–1696.
49. Ikeda T., Shirasawa T., Esaki Y. et al. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest 1993;92:2814–2820.
50. Chun T.-Y., Chander P.N., Kim J.W. et al. Aldosterone, but not angiotensin II, increases profibrotic factors in kidney of adrenalectomized strokeprone spontaneously hypertensive rats. American Journal of Physiology – Endocrinology and Metabolism. 2008;295:E305–E312.
51. Arteel G.E., Thurman R.G., Raleigh J.A. Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. Eur J Biochem 1998;253:743–750.
52. Matsumoto M., Tanaka T., Yamamoto T. et al. Hypoperfusion of Peritubular Capillaries Induces Chronic Hypoxia before Progression of Tubulointerstitial Injury in a Progressive Model of Rat Glomerulonephritis. J. Am. Soc. Nephrol. 2004;15:1574–1581.


Об авторах / Для корреспонденции


Арутюнов Г.П. – профессор, заведующий кафедрой терапии Московского факультета, проректор по научной и лечебной работе НИУ ГОУ ВПО РГМУ Росздрава, д.м.н.
Соколова А.В. – врач ГУЗ Городская поликлиника № 211 Управления здравоохранения ЮАО Москвы.
Оганезова Л.Г. – ассистент кафедры терапии Московского факультета ГОУ ВПО РГМУ Росздрава, к.м.н. lianaogan@gmail.com


Похожие статьи


Бионика Медиа