Фактор роста фибробластов 23-го типа и хроническая болезнь почек


А.Н. Нимгирова, А.М. Есаян, И.Г. Каюков.

Кафедра нефрологии и диализа ФПО ГБОУ ВПО ПСПбГМУ им. акад. И.П. Павлова МЗ РФ, Санкт-Петербург
В данном обзоре обсуждается роль фактора роста фибробластов 23-го типа (ФРФ-23) в прогрессировании почечной дисфункции, а также его кардиоваскулярные эффекты у пациентов с хронической болезнью почек. Рассматриваются различия эффектов ФРФ-23 на додиализной стадии хронической болезни почек для диализных пациентов и реципиентов почечного аллотрансплантата.

Литература


1. Смирнов А.В., Добронравов В.А., Каюков И.Г. и др. Хроническая болезнь почек: основные принципы скрининга, диагностики, профилактики и подходы к лечению. Национальные рекомендации // Нефрология. – 2012. –
№ 16(1). – С. 89–115.
2. Foley R.N., Parfrey P.S., Sarnak M.J. Clinical epidemiology of cardiovascular disease in chronic renal disease // Am J Kidney Dis. – 1998. – Vol. 32(3). –
P. 112–119.
3. Middleton R.J., Parfrey P.S., Foley R.N. Left ventricular hypertrophy in the renal patient // J Am Soc Nephrol. – 2001. – Vol. 12. – P. 1079–1084.
4. Милованова Л.Ю., Николаев А.Ю., Козлова Т.А. и др. Прогностическое значение ранней коррекции анемии у больных хронической почечной недостаточностью // Нефрология и диализ. – 2004. – № 6(1). –
С. 54–58.
5. Cai Q., Hodgson S.F., Kao P.C. et al. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia // N Engl J Med. – 1994. – Vol. 330. – P. 1645–1649.
6. Econs M.J., Drezner M.K. Tumor-induced osteomalacia – unveiling a new hormone // New Engl J Med. – 1994. – Vol. 330. – P. 1679–1681.
7. The ADHR Consortium. Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23 // Nature Genetics. – 2000. – Vol. 26. – P. 345–348.
8. Yamashita T. et al. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain // Biochemical Biophysical Research Communications. – 2000. – Vol. 277(2). – P. 494–498.
9. Katoh Y., Katoh M. Comparative genomics on mammalian FGF6-FGF23 locus // International Journal of Molecular Medicine. – 2005. – Vol. 16(2). –
P. 355–358.
10. Riminucci M. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting // Journal of Clinical Investigation. – 2003. – Vol. 112. – P. 683–692.
11. Shimada T., Mizutani S., Muto T. et al. Cloning and characterization of FGF-23 as a causative factor of tumor-induced osteomalacia // Proc Natl Acad Sci. –
2001. – Vol. 98(11). – P. 6500–6505.
12. Gattineni J., Bates C., Twombley K. et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1 // American Journal of Physiology: Renal Physiology. – 2009. –
Vol. 297(2). – P. F282–F291.
13. Ambrosetti D., Mansukhani A., Basilico C. Mechanisms underlying differential responses to FGF signaling // Cytokine and Growth Factor Reviews. – 2005. – Vol. 16(2). – P. 233–247.
14. Eswarakumar V.P., Lax I., Schlessinger J. Cellular signaling by fibroblast growth factor receptors // Cytokine and Growth Factor Reviews. – 2005. – Vol. 16(2). – P. 139–149.
15. Yu X., Ibrahimi O.A., Goetz R. et al. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23 // Endocrinology. – 2005. – Vol. 146(11). – P. 4647–4656.
16. Ben-Dov I.Z., Galitzer H., Lavi-Moshayoff V. et al. The parathyroid is a target organ for FGF23 in rats // J Clin Invest. – 2007. – Vol. 117. – P. 4003–4008.
17. Kurosu H., Ogawa Y., Miyoshi. M. et al. Regulation of fibroblast growth factor-23 signaling by Klotho // J. Biol. Chem. – 2006. – Vol. 281. – P. 6120–6123.
18. Urakawa I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23 // Nature. – 2006. – Vol. 444. – P. 770–774.
19. Larsson T., Marsell R., Schipani E. et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis // Endocrinology. – 2004. – Vol. 145. – P. 3087–3094.
20. Hu M.C., Shi M., Zhang J. et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule // FASEB Journal. –
2010. – Vol. 24(9). – P. 3438–3450.
21. Kuro O M. Phosphate and Klotho // Kidney International. – 2011. –Vol. 121. –
P. S20–S23.
22. Shimada T., Urakawa I., Yamazaki Y. et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa // Biochemical and Biophysical Research Communications. – 2004. – Vol. 314(2). – P. 409–414.
23. Yan X., Yokote H., Jing X. et al. Fibroblast growth factor 23 reduces expression of type IIa Na+/Pi co-transporter by signaling through a receptor functionally distinct from the known FGFRs in opossum kidney cells // Genes to Cells. – 2005. – Vol. 10(5). – P. 489–502.
24. Shimada T., Hasegawa H., Yamazaki Y. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis // J Bone Miner Res. – 2004 Mar. – Vol. 19(3). – P. 429–435.
25. Liu S., Tang W., Zhou J. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D // J Am Soc Nephrol. – 2006 May. – Vol. 17(5). – P. 1305–15.
26. Nishi H., Nii-Kono T., Nakanishi S. et al. Intravenous calcitriol therapy increases serum concentration of fibroblast growth factor 23 in dialysis patients with secondary hyperparathyroidism // Nephron Clin Pract. – 2005. –
Vol. 101. – P. 94–99.
27. Hansen D., Rasmussen K., Pedersen S.M. et al. Changes in fibroblast growth factor 23 during treatment of secondary hyperparathyroidism with alfacalcidol or paricalcitol // Nephrology Dialysis Transplantation. – 2012. – Vol. 27(6). –
P. 2263–2269.
28. Wesseling-Perry K., Gales B., Wang H. et al. Skeletal responses to PTH infusion: A comparison between low and high turnover renal osteodystrophy [Abstract] // J Am Soc Nephrol. – 2009. – Vol. 20. – P. 54A.
29. Antoniucci D.M., Yamashita T., Portale A.A. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men // J Clin Endocrinol Metab. – 2006. – Vol. 91. – P. 3144–3149.
30. Burnett S.M., Gunawardene S.C., Bringhurst F.R. et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women // J Bone Miner Res. – 2006. – Vol. 21. – P. 1187–1196.
31. Ferrari S.L., Bonjour J.P., Rizzoli R. FGF-23 relationship to dietary phosphate and renal phosphate handling in healthy young men // J Clin Endocrinol Metab. – 2005. – Vol. 90. – P. 1519–1524.
32. Saito H., Kusano K., Kinosaki M. et al. Human fibroblast growth factor 23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha, 25-dihydroxyvitamin D3 production // J Biol Chem. – 2003. – Vol. 278. –
P. 2206–2211.
33. Bai X., Miao D., Li J. et al. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders // Endocrinology. – 2004. – Vol. 145. –
P. 5269–5279.
34. Sitara D., Razzaque M.S., Hesse M. et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice // Matrix Biol. – 2004.– Vol. 23. – P. 421–432.
35. Gutierrez O., Isakova T., Rhee E. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease // J Am Soc Nephrol. – 2005. – Vol. 16. – P. 2205–2215.
36. Kestenbaum B., Sampson J.N., Rudser K.D. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease // J Am Soc Nephrol.– 2005. – Vol. 16(2). – P. 520–528.
37. Norris K.C., Greene T., Kopple J. et al. Baseline predictors of renal disease progression in the African American Study of Hypertension and Kidney Disease // J Am Soc Nephrol. – 2006. – Vol. 17(10). – P. 2928–2936.
38. Gutierrez O.M., Mannstadt M., Isakova T. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis // The New England Journal of Medicine. – 2008. – Vol. 359(6). – P. 584–592.
39. Jean G., Terrat J.C., Vanel T. et al. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients // Nephrology Dialysis Transplantation. – 2009. – Vol. 24(9). –
P. 2792–2796.
40. Fliser D., Kollerits B., Neyer U. et al. Fibroblast Growth Factor 23 (FGF23) predicts progression of chronic kidney disease: the mild to moderate kidney disease (MMKD) study // Journal of the American Society of Nephrology. – 2007. – Vol. 18(9). – P. 2600–2608.
41. Titan S.M., Zatz R., Graciolli F.G. et al. FGF-23 as a predictor of renal outcome in diabetic nephropathy // Clin J Am Soc Nephrol. – 2011. – Vol. 6(2). – P. 241–247.
42. Isakova T., Xie H., Yang W. et al. Fibroblast Growth Factor 23 and Risks of Mortality and End-Stage Renal Disease in Patients with Chronic Kidney Disease // JAMA. – 2011 June 15. – Vol. 305(23). – P. 2432–2439.
43. Mirza M.A.I., Larsson A., Melhus H. et al. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population // Atherosclerosis. – 2009 Dec. – Vol. 207. – P. 546–551.
44. Gutierrez O.M., Januzzi J.L., Isakova T. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease // Circulation. – 2009. – Vol. 119(19). – P. 2545–2552.
45. Hsu H.J., Wu M.S. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients // Am J Med Sci. – 2009. – Vol. 337. – P. 116–122.
46. Mirza M.A.I., Hansen T., Johansson L. et al. Relationship between circulating FGF23 and total body atherosclerosis in the community // Nephrology Dialysis Transplantation. – 2009. – Vol. 24(10). – P. 3125–3131.
47. Inaba M., Okuno S., Imanishi Y. et al. Role of fibroblast growth factor-23 in peripheral vascular calcification in nondiabetic and diabetic hemodialysis patients // Osteoporosis International. – 2006. – Vol. 17(10). –
P. 1506–1513.
48. Roos M., Lutz J., Salmhofer H. et al. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function // Clinical Endocrinology. – 2008. – Vol. 68(4). – P. 660–665.
49. Jean G., Bresson E., Terrat J.C. et al. Peripheral vascular calcification in long-haemodialysis patients: associated factors and survival consequences // Nephrology Dialysis Transplantation. – 2009. – Vol. 24(3). – P. 948–955.
50. Saji F., Shiizaki K., Shimada S. et al. Regulation of fibroblast growth factor 23 production in bone in uremic rats // Nephron. Physiology. – 2009. – Vol. 111(4). – P. 59–66.
51. Foley R.N., Murray A.M., Li S. et al. Chronic Kidney Disease and the Risk for Cardiovascular Disease, Renal Replacement, and Death in the United States Medicare Population, 1998 to 1999 // J Am Soc Nephrol. – 2005. – Vol. 16. –
P. 489–495.
52. Wolfe R.A., Ashby V.B., Milford E.L. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant // N Engl J Med. – 1999. – Vol. 341. –
P. 1725–1730.
53. Pascual M., Theruvath T., Kawai T. et al. Strategies to improve long-term outcomes after renal transplantation // N Engl J Med. – 2002. – Vol. 346. –
P. 580–590.
54. Howard R.J., Patton P.R., Reed A.I. et al. The changing causes of graft loss and death after kidney transplantation // Transplantation. – 2002. – Vol. 73. –
P. 1923–1928.
55. Steiner R.W., Ziegler M., Halasz N.A. et al. Effect of daily oral vitamin D and calcium therapy, hypophosphatemia, and endogenous 1–25 dihydroxycholecalciferol on parathyroid hormone and phosphate wasting in renal transplant recipients // Transplantation. – 1993. – Vol. 56. –
P. 843–846.
56. Green J., Debby H., Lederer E. et al. Evidence for a PTH-independent humoral mechanism in post-transplant hypophosphatemia and phosphaturia // Kidney Int. – 2001. – Vol. 60. – P. 1182–1196.
57. Loffing J., Lotscher M., Kaissling B. et al. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states // J Am Soc Nephrol. – 1998. – Vol. 9. – P. 1560–1567.
58. Shane E., Rivas M., Staron R.B. et al. Fracture after cardiac transplantation: A prospective longitudinal study // J Clin Endocrinol Metab. – 1996. – Vol. 81. – P. 1740–1746.
59. Ninkovic M., Skingle S.J., Bearcroft P.W. et al. Incidence of vertebral fractures in the first three months after orthotopic liver transplantation // Eur J Gastroenterol Hepatol. – 2000. – Vol. 12. – P. 931–935.
60. Kempe D.S., Dermaku-Sopjani M., Frohlich H. et al. Rapamycin-induced phosphaturia // Nephrol Dial Transplant. – 2010. – Vol. 25. – P. 2938–2944.
61. Levi M. Post-transplant hypophosphatemia // Kidney Int. – 2001. – Vol. 59. –
P. 2377–2387.
62. Sanjad S.A., Ibrahim A., Al Shorafa S. et al. Renal tubular dysfunction following kidney transplantation: A prospective study in 31 children // Transplant Proc. – 2001. – Vol. 33. – P. 2830–2831.
63. Evenepoel P., Meijers B.K., de Jonge H. et al. Recovery of hyperphosphatoninism and renal phosphorus wasting one year after successful renal transplantation // Clin J Am Soc Nephrol. – 2008. – Vol. 3. – P. 1829–1836.
64. Economidou D., Dovas S., Papagianni A. et al. FGF-23 Levels before and after renal transplantation // J Transplant. – 2009. – Vol. 2009. –
P. 379–382.
65. Bhan I., Shah A., Holmes J. et al. Post-transplant hypophosphatemia: Tertiary Hyper-Phosphatoninism? // Kidney Int. – 2006. – Vol. 70. – P. 1486–1494.
66. Evenepoel P., Naesens M., Claes K. et al. Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients // Am J Transplant. – 2007. – Vol. 7. – P. 1193–1200.
67. Bacchetta J., Dubourg L., Harambat J. et al. The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease // J Clin Endocrinol Metab. – 2010. – Vol. 95. –
P. 1741–1748.
68. Sato T., Fukagawa M., Uchida K. et al. 1,25-Dihydroxyvitamin D synthesis after renal transplantation: the role of fibroblast growth factor 23 and cyclosporine // Clin Transplant. – 2009. – Vol. 23. – P. 368–374.
69. Tyden G., Fehrman I., Siden A. et al. Hypophosphataemia and reversible neurological dysfunction in a patient subjected to combined renal and pancreatic transplantation // Nephrol Dial Transplant. – 1988. – Vol. 3. – P. 823–825.
70. Higgins R.M., Richardson A.J., Endre Z.H. et al. Hypophosphataemia after renal transplantation: Relationship to immunosuppressive drug therapy and effects on muscle detected by 31P nuclear magnetic resonance spectroscopy // Nephrol Dial Transplant. – 1990. – Vol. 5. – P. 62–68.
71. Julian B.A., Quarles L.D., Niemann K.M. Musculoskeletal complications after renal transplantation: Pathogenesis and treatment // Am J Kidney Dis. – 1992.– Vol. 19. – P. 99–120.
72. Cruz E.A., Lugon J.R., Jorgetti V. et al. Histologic evolution of bone disease 6 months after successful kidney transplantation // Am J Kidney Dis. – 2004. – Vol. 44. – P. 747–756.
73. Wolf M. Forging forward with 10 burning questions on FGF23 in kidney disease // J Am Soc Nephrol. – 2010. – Vol. 21. – P. 1427–1435.
74. Oliveira R.B., Cancela A.L., Graciolli F.G. et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: A new target in CKD-MBD therapy? // Clin J Am Soc Nephrol. – 2010. – Vol. 5. – P. 286–291.
75. Barsotti G., Cupisti A., Moriconi L. et al. Effects of reduced protein intake in rats with congenital polycystic kidney without renal failure // Contrib Nephrol. –
1995. – Vol. 115. – P. 134–136.
76. Moe S.M., Chen N.X., Seifert M.F. et al. A rat model of chronic kidney disease-mineral bone disorder // Kidney Int. – 2009. – Vol. 75. –
P. 176–184.
77. Schwarz A., Mengel M., Gwinner W. et al. Risk factors for chronic allograft nephropathy after renal transplantation: A protocol biopsy study // Kidney Int. –
2005. – Vol. 67. – P. 341–348.
78. Pinheiro H.S., Camara N.O., Osaki K.S. et al. Early presence of calcium oxalate deposition in kidney graft biopsies is associated with poor long-term graft survival // Am J Transplant. – 2005. – Vol. 5. – P. 323–329.
79. Habbig S., Beck B.B., Feldkotter M. et al. Renal allograft calcification – prevalence and etiology in pediatric patients // Am J Nephrol. – 2009. – Vol. 30. – P. 194–200.
80. Evenepoel P., Lerut E., Naesens M. et al. Localization, etiology and impact of calcium phosphate deposits in renal allografts // Am J Transplant. – 2009. – Vol. 9. – P. 2470–2478.
81. Ahmadpoor P., Ilkhanizadeh B., Ghasemmahdi L. et al. Effect of active vitamin D on expression of co-stimulatory molecules and HLA-DR in renal transplant recipients // Exp Clin Transplant. – 2009. – Vol. 7. – P. 99–103.
82. Tanaci N., Karakose H., Guvener N. et al. Influence of 1,25-dihydroxyvitamin D3 as an immunomodulator in renal transplant recipients: A retrospective cohort study // Transplant Proc. – 2003. – Vol. 35. – P. 2885–2887.
83. Sezer S., Uyar M., Arat Z. et al. Potential effects of 1,25-dihydroxyvitamin D3 in renal transplant recipients // Transplant Proc. – 2005. – Vol. 37. –
P. 3109–3111.
84. Mathieu C., Jafari M. Immunomodulation by 1,25-dihydroxyvitamin D3: Therapeutic implications in hemodialysis and renal transplantation // Clin Nephrol. – 2006. – Vol. 66. – P. 275–283.
85. Amuchastegui S., Daniel K.C., Adorini L. Inhibition of acute and chronic allograft rejection in mouse models by BXL-628, a nonhypercalcemic vitamin D receptor agonist // Transplantation. – 2005. – Vol. 80. – P. 81–87.
86. Tripathi S.S., Gibney E.M., Gehr T.W. et al. High prevalence of vitamin D deficiency in African American kidney transplant recipients // Transplantation. –
2008. – Vol. 85. – P. 767–770.
87. Ewers B., Gasbjerg A., Moelgaard C. et al. Vitamin D status in kidney transplant patients: Need for intensified routine supplementation // Am J Clin Nutr. – 2008. – Vol. 87. – P. 431–437.
88. Marcen R., Ponte B., Rodriguez-Mendiola N. et al. Vitamin D deficiency in kidney transplant recipients: Risk factors and effects of vitamin D3 supplements // Transplant Proc. – 2009. – Vol. 41. – P. 2388–2390.
89. Wolf M., Molnar M., Amaral A. et al. Elevated Fibroblast Growth Factor 23 is a Risk Factor for Kidney Transplant Loss and Mortality // J Am Soc Nephrol. –
2011. – Vol. 22. – P. 956–966.
90. Есаян А.М., Каюков И.Г., Нимгирова А.Н. и др. Фактор роста фибробластов 23-го типа у реципиентов почечного аллотрансплантата // Нефрология. – 2012. – №4. – С. 50–54.


Об авторах / Для корреспонденции


Информация об авторах:
Нимгирова А.Н. – старший лаборант кафедры нефрологии и диализа ФПО ГБОУ ВПО ПСПбГМУ им. акад. И. П. Павлова МЗ РФ
Есаян А.М. – заведующий кафедрой нефрологии и диализа ФПО ГБОУ ВПО ПСПбГМУ им. акад. И.П. Павлова МЗ РФ, д.м.н., профессор
E-mail: essaian.ashot@gmail.com
Каюков И.Г. – профессор кафедры нефрологии и диализа ФПО ГБОУ ВПО ПСПбГМУ им. акад. И.П. Павлова Минздрава России, д.м.н.


Похожие статьи


Бионика Медиа