Ренальная остеодистрофия: начальные события


В.М. Ермоленко

ГБОУ ДПО «Российская медицинская академия последипломного образования МЗ РФ, кафедра нефрологии и гемодиализа, Москва
В обзоре литературы анализируется эволюция взглядов на начальные события, вызывающие развитие минерально-костных нарушений у больных хронической болезнью почек. Особое внимание уделено нарушениям передачи Wnt-сигнала – важнейшей, по современным представлениям, причины формирования патологии костной ткани еще в отсутствие других проявлений минерально-костных нарушений.

Литература


  1. McCollum E.V. A History of Nutrition. Houghton Mifflin, Boston, MA, 1957.
  2. Mellanby E. An experimental investigation of rickets. Lancet. 1919;1:407–12.
  3. Windaus A. The chemistry of irradiated ergosterol. Proc. R. Soc. (Lond). 1931;108:568–75.
  4. Huldschinsky K. Heilung von Rachitis durch künstliche Höhensonne. Dtsch. Med. Wochenschr. 1919;45:712–3.
  5. Hess A.F., Unger L.J. The cure of infantile rickets by artificial light and by sunlight. Proc. Soc. Exp. Biol. Med. 1921;18:298.
  6. Hess A.F., Weinstock M., Heelman F.D. The antirachitic value of irradiated phytosterol and cholesterol. J. Biol. Chem. 1925;63:305–9.
  7. Askew F.A., Bruce H.M., Callow R.K. Crystalline vitamin D. Nature (Lond.). 1931;128:758.
  8. Blunt J.W., DeLuca H.F., Schnoes H.K. 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochemistry. 1968;7(10):3317–22.
  9. Holick M.F., Schnoes H.K., DeLuca H.F. Identification of 1,25-dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine. Proc. Natl. Acad. Sci USA. 1971;68(4):803–4.
  10. Fraser D.R., Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970;228(5273):764–6.
  11. Lawson D.E., Fraser D.R., Kodicek E., Morris H.R., Williams D.H. Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature. 1971;230(5291):228–30.
  12. DeLuca H.F. The kidney as an endocrine organ involved in the function of vitamin D. Am. J. Med. 1975;58(1):39–47.
  13. Mawer E.B., Taylor C.M., Backhouse J. Failure of formation of 1,25-dihydroxychole-calciferol in chronic renal insufficiency. Lancet. 1973;1(7804):626–8.
  14. Jurutka P.W., Bartik L., Whitfield G.K. Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J. Bone Miner Res. 2007;22(2):V2–10.
  15. St-Arnaud R. The direct role of vitamin D on bone homeostasis. Arch. Biochem. Biophys. 2008;473(2):225–30.
  16. Pitts T.O., Piraino B.H., Mitro R. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate and severe renal failure. J. Clin. Endocrinal. Metab. 1988;67(5):876–81.
  17. Gonzales E.A., Sachdeva A., Oliver D.A., Martin K.J. Vitamin D insufficiency and deficiency in chronic kidney disease. A single center observational study. J. Am. Soc. Nephrol. 2004;24(5):503–10.
  18. Levin A., Bakris G.L., Molitch M. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8.
  19. Cundy T., Hand D.J., Oliver D.O. Who gets renal bone disease before beginning dialysis? Br. Med. J. (Clin. Res. Ed.). 1985;290(6464):271–5.
  20. Coen G., Mazzaferro S., Ballanti P. Renal bone disease in 76 patients with varying degrees of predialysis chronic renal failure: a cross-sectional study. Nephrol. Dial. Transplant. 1996;11(5):813–9.
  21. Spasovski G.B., Bervoets A.R., Behets G.J. Spectrum of renal bone disease in end-stage renal failure patients not yet on dialysis. Nephrol. Dial. Transplant. 2003;18(6):1159–66.
  22. Cai Q., Hodgson S.F., Kao P.C. Brief report: inhibition of renal phosphate transport by a tumor product in a patients with oncogenic osteomalacia. N. Engl. J. Med. 1994;330(23):1645–9.
  23. Quarles L.D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 2008;118(12):3820–8.
  24. Shimada T., Hasegawa H., Yamazaki Y. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 2004;19(3):429–35.
  25. Barthel T.K., Mathern D.R., Whitfield G.K. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J. Steroid Biochem. Mol. Biol. 2007;103(3–5):381–8.
  26. Yu X., Sabbagh Y., Davis S.I. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone. 2005;36(6):971–7.
  27. Ben-Dov I.Z., Galitzer H., Lavi-Moshayoff V. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 2007;117(12):4003‒8.
  28. Lavi-Moshayoff V., Wasserman G., Meir T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal. Physiol. 2010;299(4):F882–9.
  29. Haut L.L., Alfrey A.C., Guggenheim S. Renal toxicity of phosphate in rats. Kidney Int. 1980;17(6):722–31.
  30. Kazama J.J., Sato F., Omori K. Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients. Kidney Int. 2005;67(3):1120–5.
  31. Nakanishi S., Kazama J.J., Nii-Kono T. Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int. 2005;67(3):1171–8.
  32. Gutiérrez O.M., Mannstadt M., Isakova T. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 2008;359(6):584–92.
  33. Ibels L.S., Alfrey A.C., Huffer W.E. Arterial calcification and pathology in uremic patients undergoing dialysis. Am. J. Med. 1979;66(5):790–6.
  34. Giachelli C.M., Jono S., Shioi A. Vascular calcification and inorganic phosphate. Am. J. Kidney Dis. 2001;38(1):S34–7.
  35. Ärnlöv J., Carlsson A.C., Sundström J. Higher fibroblast growth factor-23 increases the risk of all-cause and cardiovascular mortality in the community. Kidney Int. 2013;83(1):160–6.
  36. Fliser D., Kollerits B., Neyer U. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 2007;18(9):2600–8.
  37. Fang Y., Ginsberg C., Sugatani T. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142–50.
  38. Isakova T., Xie H., Barchi-Chung A. Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin. J. Am. Soc. Nephrol. 2011;6(11):2688–95.
  39. Helvig C.F., Cuerrier D., Hosfield C.M. Dysregulation of renal vitamin D metabolism in the uremic rat. Kidney Int. 2010;78(5):463–72.
  40. Quarles L.D. The bone and beyond: 'Dem bones' are made for more than walking. Nat. Med. 2011;17(4):428–30.
  41. Добронравов В.А., Богданова Е.О. Патогенез нарушений обмена фосфатов при хронической болезни почек: все ли так ясно, как кажется? Нефролгия. 2014;18(2):42–6.
  42. Silver J., Naveh-Many T., Mayer H. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J. Clin. Invest. 1986;78(5):1296–301.
  43. Slatopolsky E., Lopez-Hilker S., Delmez J. The parathyroid-calcitriol axis in health and chronic renal failure. Kidney Int. Suppl. 1990;29:S41–7.
  44. De Oliveira R.B., Graciolli F.G., dos Reis L.M. Disturbances of Wnt/β-catenin pathway and energy metabolism in early CKD: effect of phosphate binders. Nephrol. Dial. Transplant. 2013;28(10):2510–7.
  45. Block G.A., Hulbert-Shearon T.E., Levin N.W., Port F.K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 1998;31(4):607–17.
  46. Isakova T., Gutiérrez O.M., Chang Y. Phosphorus binders and survival on hemodialysis. J. Am. Soc. Nephrol. 2009;20(2):388–96.
  47. Kuroo M. Overview of the FGF23-Klotho axis. 2010;25(4):583–90.
  48. Hu M.C., Shi M., Zhang J. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.
  49. Haruna Y., Kashihara N., Satoh M. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc. Natl. Acad. Sci USA. 2007;104(7):2331–6.
  50. Wang Y., Sun Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension. 2009;54(4):810–7.
  51. Sugiura H., Yoshida T., Tsuchiya K. Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol. Dial. Transplant. 2005;20(12):2636–45.
  52. Seiler S., Wen M., Roth H.J. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 2013;83(1):121–8.
  53. Hu M.C., Shi M., Zhang J. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 2011;22(1):124–36.
  54. Barker S.L., Pastor J., Carranza D. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol. Dial. Transplant. 2015;30(2):223–33.
  55. Koh N., Fujimori T., Nishiguchi S. Severely reduced production of klotho in human chronic renal failure kidney. Biochem. Biophys. Res. Commun. 2001;280(4):1015–20.
  56. O’Brien S.P., Boulanger J.H., Liu S. Decline in Klotho Expression Precedes FGF23 and PTH Induction in the Jck Mouse, a Progressive Genetic Model of CKD-MBD. J. Am. Soc. Nephrol. 2009;20:54A.
  57. Saji F., Shiizaki K., Shimada S. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron. Physiol. 2009;111(4):59–66.
  58. Пекарский М.И., Захаров В.Б. Общая и возрастная гистология человека. М.: Экон-информ, 2014.
  59. Chaudhry S.S., Cain S.A., Morgan A. Fibrillin-1 regulates the bioavailability of TGFbeta1. J. Cell. Biol. 2007;176(3):355–67.
  60. Isogai Z., Ono R.N., Ushiro S. Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J. Biol. Chem. 2003;278(4):2750–7.
  61. Neptune E.R., Frischmeyer P.A., Arking D.E. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 2003;33(3):407–11.
  62. Habashi J.P., Judge D.P., Holm T.M. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006:312(5770):117–21.
  63. Brooke B.S., Habashi J.P., Judge D.P. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 2008;358(26):2787–95.
  64. Zhou L., Li Y., Hao S. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 2015;26(1):107–20.
  65. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287(5785):795–801.
  66. Wu J., Cohen S.M. Repression of Teashirt marks the initiation of wing development. Development. 2002;129(10):2411–8.
  67. Nusse R., van Ooyen A., Cox D. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature. 1984;307(5947):131–6.
  68. Rijsewijk F., Schuermann M., Wagenaar E. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987;50(4):649–57.
  69. Bhanot P., Brink M., Samos C.H. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;382(6588):225–30.
  70. Wehrli M., Dougan S.T., Caldwell K. Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature. 2000;407(6803):527–30.
  71. Li V.S., Ng S.S., Boersema P.J. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012;149(6):1245–56.
  72. Reya T., Duncan A.W., Ailles L. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409–14.
  73. Qin S., Taglienti M., Cai L. c-Met and NF-κB-dependent overexpression of Wnt7a and -7b and Pax2 promotes cystogenesis in polycystic kidney disease. J. Am. Soc. Nephrol. 2012;23(8):1309–18.
  74. Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.
  75. Iglesias D.M., Hueber P.A., Chu L. Canonical WNT signaling during kidney development. Am. J. Physiol. Renal. Physiol. 2007;293(2):F494–500.
  76. Schmidt-Ott K.M., Barasch J. WNT/beta-catenin signaling in nephron progenitors and their epithelial progeny. Kidney Int. 2008;74(8):1004–8.
  77. Vivante A., Mark-Danieli M., Davidovits M. Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical WNT signalling. J. Am. Soc. Nephrol. 2013;24(4):550–8.
  78. Surendran K., McCaul S.P., Simon T.C. A role for Wnt-4 in renal fibrosis. Am. J. Physiol. Renal. Physiol. 2002;282(3):F431–41.
  79. Lin S.L., Li B., Rao S. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl. Acad. Sci USA. 2010;107(9):4194–9.
  80. Terada Y., Tanaka H., Okado T. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J. Am. Soc. Nephrol. 2003;14(5):1223–33.
  81. Pittenger M.F., Mackay A.M., Beck S.C. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.
  82. Sekiya I., Vuoristo J.T., Larson B.L., Prockop D.J. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc. Natl. Acad. Sci USA. 2002;99(7):4397–402.
  83. Sekiya I., Larson B.L., Vuoristo J.T. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J. Bone Miner. Res. 2004;19(2):256–64.
  84. Bain G., Müller T., Wang X., Papkoff J. Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem. Biophys. Res. Commun. 2003;301(1):84–91.
  85. Little R.D., Carulli J.P., Del Mastro R.G. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 2002;70(1):11–9.
  86. Gong Y., Slee R.B., Fukai N. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.
  87. Kulkarni N.H., Halladay D.L., Miles R.R. Effects of parathyroid hormone on Wnt signaling pathway in bone. J. Cell. Biochem. 2005;95(6):1178–90.
  88. Shao J.S., Cheng S.L., Pingsterhaus J.M., Charlton-Kachigian N., Loewy A.P., Towler D.A. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J. Clin. Invest. 2005;115(5):1210–20.
  89. Lanske B., Razzaque M.S. Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int. 2014;86(6):1072–4.
  90. Winkler D.G., Sutherland M., Geoghegan J.C. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76.
  91. Moester M.J., Papapoulos S.E., Löwik C.W., van Bezooijen R.L. Sclerostin: current knowledge and future perspectives. Calcif. Tissue Int. 2010;87(2):99–107.
  92. Brunkow M.E., Gardner J.C., Van Ness J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 2001;68(3):577–89.
  93. Bhattoa H.P., Wamwaki J., Kalina E. Serum sclerostin levels in healthy men over 50 years of age. J. Bone Miner. Metab. 2013;31(5):579–84.
  94. Cejka D., Marculescu R., Kozakowski N. Renal elimination of sclerostin increases with declining kidney function. J. Clin. Endocrinol. Metab. 2014;99(1):248–55.
  95. Brandenburg V.M., Kramann R., Koos R. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrol. 2013;14:219.
  96. Drechsler C., Evenepoel P., Vervloet M.G. High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: results from the NECOSAD study. Nephrol. Dial. Transplant. 2015;30(2):288–93.
  97. Pinzone J.J., Hall B.M., Thudi N.K. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009;113(3):517–25.
  98. Morvan F., Boulukos K., Clément-Lacroix P. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 2006;21(6):934–45.
  99. Fulciniti M., Tassone P., Hideshima T. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009;114(2):371–9.
  100. Tian E., Zhan F., Walker R. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 2003;349(26):2483–94.
  101. Pietilä I., Ellwanger K., Railo A. Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling. Dev. Biol. 2011;353(1):50–60.
  102. Aguilera O., Fraga M.F., Ballestar E. Epigenetic inactivation of the Wnt antagonist Dickkopf-1 (DKK-1) gene in human colorectal cancer. Oncogene. 2006;25(29):4116–21.
  103. Diarra D., Stolina M., Polzer K. Dickkopf-1 is a master regulator of joint remodelling. Nat. Med. 2007;13(2):156–63.
  104. Sabbagh Y., Graciolli F.G., O'Brien S. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J. Bone Miner. Res. 2012;27(8):1757–72.
  105. Bellido T., Ali A.A., Gubrij I. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146(11):4577–83.
  106. Fang Y., Ginsberg C., Seifert M. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J. Am. Soc. Nephrol. 2014;25(8):1760–73.


Об авторах / Для корреспонденции


Информация об авторе:
Ермоленко В.М. – профессор, зав. кафедрой нефрологии и гемодиализа ГБОУ ДПО РМАПО МЗ РФ, д.м.н.
E-mail: nephrology@mail.ru


Похожие статьи


Бионика Медиа