COVID-19 и поражение почек
DOI: https://dx.doi.org/10.18565/nephrology.2021.4.61-66
Л.В. Михайлова, Д.О. Шелег, Р.С. Богачев
ФГАОУ ВО «Балтийский федеральный университет им. И. Канта», Медицинский институт, Калининград, Россия
В обзоре приводятся данные о частоте и причинах возникновения и развития острого повреждения почек (ОПП) при COVID-19. Проведен обзор имеющейся научной информации относительно возникновения и/или прогрессирования хронической болезни почек (ХБП) при COVID-19, а также сделан акцент на редких формах поражений почек, которые могут развиваться при COVID-19. Уделено внимание аспектам этиопатогенеза и клинической картины поражения почек при COVID-19. Авторы при написании статьи глобально не затрагивали вопросов лечения почечной патологии, сформированной при COVID-19, поскольку оно в настоящее время в основном сводится, с одной стороны, к лечению конкретной формы заболевания почек, с другой – к лечению непосредственно коронавирусной инфекции. Понимание процессов альтерации клеток почечной ткани при этом заболевании, возможно, поможет в будущем определить подходы к профилактике поражения почек и восстановлению их функции у пациентов, болеющих или перенесших COVID-19.
Литература
- Liu Y.F., Zhang Z., Pan X.L., et al. The chronic kidney disease and acute kidney injury involvement in COVID-19 pandemic: A systematic review and meta-analysis. PLoS One. 2021;16(1):e0244779.
- Kunutsor S.K., Laukkanen J.A. Renal complications in COVID-19: a systematic review and meta-analysis. Ann. Med. 2020;52(7):345–53. Doi: 10.1080/07853890.2020.1790643.
- Henry B.M., Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int. Urol. Nephrol. 2020;52:1193–94. https://doi.org/10.1007/s11255-020-02451-9.
- Qi F., Qian S., Zhang S., Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 2020;526(1):135–40, Doi: 10.1016/j.bbrc.2020.03.044.
- Pan X.-W., Xu D., Zhang H., et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis. Intens. Care Med. 2020;46(6):1114–16. Doi: 10.1007/s00134-020-06026-1.
- Diao B., Feng Z., Wang C., et al. Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Infection. MedRxiv. 2020. Doi: 10.1101/2020.03.04.20031120.
- Su H., Yang M., Wan C., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020. Doi: 10.1016/j.kint.2020.04.003.
- Cheng Y., Luo R., Wang K., et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020:1–10. Doi: 10.1016/j.kint.2020.03.005.
- Li ., Wu M., Yao J., et al. Caution on kidney dysfunctions of COVID-19 patient. 2020. Doi: 10.1101/2020.02.08.20021212.
- Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID‐19. J. Pharm. Anal. 2020;10(2):102–8. Doi: 10.1016/j.jpha.2020.03.001.
- Petejova N., Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: A critical review. Crit. Care. 2014;18. Doi: 10.1186/cc13897.
- Chu K.H., Tsang W.K., Tang C.S., et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67:698–705. Doi: 10.1111/j.1523-1755.2005.67130.x.
- Del Vecchio L., Locatelli F. Hypoxia response and acute lung and kidney injury: possible implications for therapy of COVID-19. Clin. Kidney J. 2020;13(4):494–99.
- Batlle D., Soler M.J., Sparks M.A., et al. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J. Am. Soc. Nephrol. 2020;31:1380–83. Doi: 10.1681/ASN.2020040419.
- Kuppalli K., Rasmussen A.L. A glimpse into the eye of the COVID-19 cytokine storm. EBioMedicine. 2020;55:102789. Doi: 10.1016/j.ebiom.2020.102789.
- Guan W., Ni Z., Hu Y., et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708–20. Doi: 10.1056/NEJMoa2002032.
- Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13. Doi: 10.1016/S0140-6736(20)30211-7.
- Chen T., Wu D., Chen H., et al. Clinical characteristics of 113 deceased patients with Coronavirus disease 2019: retrospective study. BMJ. 2020. 368:m1091. 10.1136/bmj.m1091.
- Arentz M., Yim E., Klaff L., et al. Characteristics and outcomes of 21 critically ill patients with covid-19 in Washington state. JAMA. 2020;323:1612–14. Doi: 10.1001/jama.2020.4326.
- Hirsch J.S., Ng J.H., Ross D.W., et al. Acute Kidney Injury in Patients Hospitalized with Covid-19. Kidney Int. 2020;98:209–18. Doi: 10.1016/j.kint.2020.05.006.
- Coca A., Burballa C., Centellas-Pérez F.J., et al. Outcomes of COVID-19 Among Hospitalized Patients With Non-dialysis CKD. Front. Med. (Lausanne). 2020;7:615312.
- Pei G., Zhang Z., Peng J., et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J. Am. Soc. Nephrol. 2020;31:1157–65. Doi: 10.1681/ASN.2020030276.
- Narayanan M. The many faces of infection in CKD: evolving paradigms, insights, and novel therapies. Adv. Chronic. Kidney Dis. 2019;26:5–7. Doi: 10.1053/j.ackd.2018.10.001.
- Dalrymple L.S., Go A.S. Epidemiology of acute infections among patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008;3:1487–93. Doi: 10.2215/CJN.01290308.
- Syed-Ahmed M., Narayanan M. Immune dysfunction and risk of infection in chronic kidney disease. Adv. Chronic. Kidney Dis. 2019;26:8–15. Doi: 10.1053/j.ackd.2019.01.004.
- Litjens N.H., van Druningen C.J., Betjes M.G. Progressive loss of renal function is associated with activation and depletion of naive T lymphocytes. Clin. Immunol. 2006;118:83–91. Doi: 10.1016/j.clim.2005.09.007.
- Williamson E.J., Walker A.J., Bhaskaran K. Factors associated with COVID-19-related death using Open SAFELY. Nature. 2020;584(7821): 430–36.
- Cummings M.J., Baldwin M.R., Abrams D. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70.
- Gansevoort R.T., Hilbrands L.B. CKD is a key risk factor for COVID-19 mortality. Nat. Rev. Nephrol. 2020;26:1–2.
- Anding K., Gross P., Rost J.M., et al. The influence of uraemia and haemodialysis on neutrophil phagocytosis and antimicrobial killing. Nephrol. Dial. Transplant. 2003;18:2067–73. Doi: 10.1093/ndt/gfg330.
- Ando M., Shibuya A., Tsuchiya K., Akiba T., Nitta K. Reduced expression of Toll-like receptor 4 contributes to impaired cytokine response of monocytes in uremic patients. Kidney Int. 2006;70(2):358–62.
- Vaziri N.D. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin. Nephrol. 2004;24:469–73. Doi: 10.1016/.semnephrol.2004.06.026.
- Goligorsky M.S. Pathogenesis of endothelial cell dysfunction in chronic kidney disease: a retrospective and what the future may hold. Kidney Res. Clin. Pract. 2015;34:76–82. Doi: 10.1016/j.krcp.2015.05.003.
- Abbate M., Zoja C., Remuzzi G. How does proteinuria cause progressive renal damage? J. Am. Soc. Nephrol. 2006;17:2974–84. Doi: 10.1681/ASN.200604037.
- Ng J.H., Hirsch J.S., Hazzan A., et al. Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury. AJKD. 2021;77(2). Doi link: https://doi.org/10.1053/j.ajkd.2020.09.002
- Flythe J.E., Assimon M.M., Tugman M.J., et al. Characteristics and Outcomes of Individuals With Pre-existing Kidney Disease and COVID-19 Admitted to Intensive Care Units in the United States. Am. J. Kidney Dis. 2021;77(2):190–203.e1. Doi: 10.1053/j.ajkd.2020.09.003.
- Kang S.H., Kim S.W., Kim A.Y., et al. Association between Chronic Kidney Disease or Acute Kidney Injury and Clinical Outcomes in COVID-19 Patients. J. Korean Med. Sci. 2020;35(50):e434. doi: 10.3346/jkms.2020.35.e434.
- James M.T., Grams M.E., Woodward M., et al. A meta-analysis of the association of estimated GFR, albuminuria, diabetes mellitus, and hypertension with acute kidney injury. Am. J. Kidney Dis. 2015;66:602–12. Doi: 10.1053/j.ajkd.2015.02.338.
- Wu VC, Huang TM, Lai CF, Shiao CC, Lin YF, Chu TS, et al. Acute-on-chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality. Kidney Int. 2011;80:1222–30. Doi: 10.1038/ki.2011.259.
- Nuzzo D., Picone P. Potential neurological effects of severe COVID-19 infection. Neurosci. Res. 2020;158:1–5.
- Sterne J.A.C., Murthy S., Diaz J.V. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324(13):1–13.
- Wu J., Li J., Zhu G. Clinical features of maintenance hemodialysis patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Clin. J. Am. Soc. Nephrol. 2020;15(8):1139–45.
- Corbett R.W., Blakey S., Nitsch D. Epidemiology of COVID-19 in an urban dialysis center. J. Am. Soc. Nephrol. 2020;31(8):1815–23.
- Basile C., Combe C., Pizzarelli F., et al. Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrol. Dial. Transplant. 2020;35:737–41.
- Rombola G., Heidempergher M., Pedrini L., et al. Practical indications for the prevention and management of SARS-CoV-2 in ambulatory dialysis patients: lessons from the first phase of the epidemics in Lombardy. J. Nephrol. 2020;33:193–96.
- Hoilat G.J., Das G., Shahnawaz M., et al. COVID-19 induced collapsing glomerulopathy and role of APOL1. QJM. 2020 Dec 26. Doi: 10.1093/qjmed/hcaa335.
- Kissling S., Rotman S., Gerber C., et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int. 2020;98:228–31.
- Peleg Y., Kudose S., D’Agati V., et al. Acute kidney injury due to collapsing glomerulopathy following COVID-19 infection. Kidney Intern. Rep. 2020;5(6):940–45.
- Larsen C.P., Bourne T.D., Wilson J.D., et al. Collapsing glomerulopathy in a patient with COVID-19. Kidney Intern. Rep. 2020;5(6):935–39.
Об авторах / Для корреспонденции
Михайлова Лариса Викторовна – к.м.н., доцент кафедры терапии медицинского института ФГАОУ ВО Балтийский федеральный университет им. И. Канта, Калининград; e-mail: mihalysa@mail.ru. ORCID: 0000-0001-5070-5955.
Шелег Дмитрий Олегович – ассистент кафедры терапии медицинского института ФГАОУ ВО Балтийский федеральный университет им. И. Канта, Калининград; e-mail: sch994@rambler.ru. ORCID: 0000-0003-2931-5383.
Богачев Роберт Стефанович – д.м.н., профессор, заведующий кафедрой терапии медицинского института ФГАОУ ВО Балтийский федеральный университет им. И. Канта, Калининград; e-mail: robcm@rambler.ru. ORCID: 0000-0002-9651-0018.
Похожие статьи